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ABSTRACT
In this paper, I try to explain how, by using concepts and ideas from
the mathematical theory of tilings, we can approach metre in music
through ageometric and algebraic point of view, beingpinneddown
by a subgroup of R with the hierarchical structure, leading to an
abstract approach to rhythm, tempo and time signatures. I will also
describe an algorithmic approach to write down sound using this
structure which gives a way in which music can be written in an
irrational metre.
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In this paper, I try to use concepts from the theory of aperiodic tilings to generalize the
concept of rhythm, tempo, and time signatures. This helps both illustrate the concepts
related to tilings as well as make the notions of musical metre more abstract, allowing
one to approach musical composition from a more general point of view. Let me begin
by suggesting how tilings andmusic can be related, or how they can be seen to have similar
underlying structures. Consider the following two objects.

The first object is a bar of music containing part of a melody while the second can be
thought of as a finite collection of tiles which tile a line segment. The relative placement of
the two images is deliberate: the fact that the coloured tiles cover a one-dimensional seg-
ment in the bottom image suggests that the bar ofmusic is tiled by the notes and rests found
in the bar. The distinction between notes of same length and different pitch is reflected in
the difference in colour of tiles of the same length in the image on the bottom.

Western music is traditionally organized through an ordered and hierarchical
structure.1 It is hierarchical since we make notes fit into bars which fit into movements,
etc. It is ordered because time flows in one direction and music is written in this order-
respecting way, meant to indicate the order in which notes are played. That music in the
Western tradition can be seen as the tiling of time with sounds is the basic idea that moti-
vates this paper. Here I try to show how the mathematics of aperiodic tilings, that is, the
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Figure 1. A checkerboard tilings (left) and a chair tiling (right).

language used to describe the hierarchical and geometric structure of tilings, can be useful
in describing the metre structure of Western music.

The main mathematical objects here are tilings, especially ones which are aperiodic.
Aperiodicity will be defined in Section 1, and is heavily contrasted with periodicity (see
Figure 1 for examples of periodic and aperiodic tilings). The study of aperiodic tilings lies at
the intersection of several areas of mathematics and physics.2 Kepler explores the problem
of finding a tiling of the plane with finitely many shapes derived from the pentagon in his
HarmonicesMundi from1619. The problemof finding an aperiodic tiling of a planewas not
formalized until the work of HaoWang in the early 1960s, where he asked whether it was
decidable that a specific set of tiles (known asWang tiles) could tile the plane. Through the
use of Turing machines, his student Robert Berger answered this question in the negative,
which shows that there are sets of Wang tiles that can tile the plane aperiodically. In the
1970’s, Roger Penrose found two shapes derived from a pentagon, which can tile the plane
only aperiodically and with a five-fold symmetry, giving the well-known Penrose tiling.

The connection with physics came a few years later: Dan Shechtman studied (Shecht-
man et al., 1984) a solid whose atomic structure seemed impossible up to that point since
solids with aperiodic structure were not known. These solids are now known as quasicrys-
tals. For this discovery, he received theNobel Prize inChemistry in 2011.As such, aperiodic
tilings serve as good models for quasicrystals.

The concept of tilings entered the musical realm with the work of Vuza (1991, 1992a,
1992b, 1993), although this had already been hinted at by the composer Olivier Messiaen.
Some of his concepts were developed into what became known as tiling canons, which have
been the subject of many works, even having special issues of the Journal of Mathematics
and Music and Perspectives of NewMusic each solely dedicated to tilings in music (see also
Hall and Klingsberg, 2006). See Andreatta and Agon (2009) and Rahn (2011), respectively,
for an overview of the collections of papers in those special issues. Most of these works are
concerned with periodic tilings.

One-dimensional tilings, the ones which are relevant in music, are tied to sequences
of symbols. In parallel to the use of tilings, the use of sequences has also been explored
musically, especially for aperiodic sequences: Canright (1990) explores rhythm patterns
associated with the Fibonacci sequence. In Carey and Clampitt (1996), Carey and Clampitt
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explore pitch structures derived from sequences with particular focus in sequences with
self-similar structures, that is, derived from substitution rules, where it is brieflymentioned
how rhythm structures can be assigned from sequences and that these come ordered hier-
archically. This line of thought is picked up by Callender in Callender (2013, 2015), where
the focus is on Sturmian sequences3 and interpreting the relationship between different
hierarchical levels as a canon. The use of substitution systems and aperiodic sequences
also show up in algorithmic composition using so-called Lindenmeyer systems (see e.g.
Manousakis, 2006;Mason and Saffle, 1994; Prusinkiewicz, 1986;Worth and Stepney, 2005).
The recent article of Ong (2020) also considers the use of aperiodic functions in musi-
cal composition. The contemporary British composer Liam Taylor-West, after spending a
year as the resident composer of the School of Mathematics at the University of Bristol, has
recently finished a series of works derived and inspired by substitution tilings. There is an
applet in Greg Egan’s webpage to create music based on two-dimensional aperiodic tilings,
which is only superficially related to what is discussed here. Likewise, there is an approach
on planar tilings by Skala (n.d.).

In the spirit of the special issue, here I intend to use some of the mathematics used in
the study of aperiodic tilings to push the use of tilings in music further. This will help
both illustrate the mathematics of aperiodic tilings as well as bring new ideas to the theory
of rhythm. What sets the point of view here apart from previous aperiodic approaches is
that I do not only focus on combinatorial aperiodicity, but also on geometric aperiodicity.
This roughlymeans that not only will we be interested in aperiodic sequences and deriving
sounds from them, butwe are interested in the length of the sounds attached so each symbol
in an aperiodic sequence. This length, a type of beat, is tied to the geometry of the tiling
in this analogy and is related to certain algebraic properties of the tiling. Most (though
not all, the notable exception being Callender, 2013) previous work using aperiodic struc-
tures in music remains committed to the use of a rational beat even when it may be more
natural to do otherwise. Here I suggest how we can get out of this rational trap by giving
metre an algebraic structure. This leads to a sturdy notion of time signatures, tempo and
rhythm using the language of tilings and semigroups, and helps define irrational metres
(see Section 2).

I confess that the fact that one can have a truly irrational metre, as I argue here, does
not mean that there is a reasonable way to write it down for someone to play. In other
words, even if there is good notation for it, it is most likely impossible to be played by
humans. Performing irrational metre is no mere abstract concern: see Callender (2014)
for a thorough look at the mathematical, compositional, and performance issues involved
in the approximation of irrational rhythms by live performers, focusing on those found in
the work of Nancarrow.

Since there are several threads in this mathemusical braid, I will take the time to intro-
duce each of them and later describe how they come together. I will make an attempt to
minimize how technical the exposition is. However, I will need to introduce enough techni-
cal language to be able to discuss themain ideas and I will illustrate the ideas with examples
tomake the ideasmore concrete. By the end of this article, however, I hope to convince you
that there is such a thing as an irrational time signature, and how you can compose in

√
5.

In a follow-up paper (Treviño, 2021), I will develop the algebraic theory ofmetre separately
without appealing to aperiodic tilings.

http://www.gregegan.net/APPLETS/34/34.html
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This paper is organized as follows. In Section 1, all the necessary notions from tilings
will be introduced and illustrated with examples. In Section 2, I show how musical metre
is defined from a one-dimensional tiling. Section 3 discusses how one can put together the
ideas of Sections 1 and 2 to make music in the case of self-similar tilings. Section 4 covers
several composition tricks which come from the algebraic structure of metre, again focus-
ing on the self-similar case. The focus here is on algorithmic composition, with examples
illustrating the ideas presented, all of which were created using a computer. It would be
interesting to try to compose non-algorithmically in some irrational metre.

Note: the electronic version of this document has links to webpages and audio files
online.

1. Tilings

Tilings are ways of covering a Euclidean space using compact, connected objects called
tiles. A tiling of someEuclidean spacewill be denoted by the symbolT . I will give a very soft
introduction to some concepts related to their study. The interested reader looking for in-
depth treatment can consult any of the excellent introductions to the topic: Grünbaum and
Shephard (2016); Arthur Robinson (2004) and Baake and Grimm (2013); Sadun (2008).
There is also an excellent online resource with numerous examples, the Tilings Encyclo-
pedia.

1.1. Warmup: hierarchical tilings in two dimensions

The easiest way to visualize tilings is in two dimensions. Figure 1 has some local tiling
designs for the floor, walls or ceiling in a room you may visit. It is easy to imagine tiling an
infinite plane using the checkerboard pattern by extrapolating the periodic pattern indefi-
nitely.What is harder to imagine is how to find a good rule to extrapolate the second image
to a tiling of an infinite plane. Here is the good news: not only can the second pattern
be extended indefinitely, but it can be done so that the resulting tiling, unlike the infinite
checkerboard tiling, will have an aperiodic structure. By this, I mean the following: there is
no vector v such that if I translate the infinite tiling by this vector then the resulting tiling
will be exactly the same as the one I started with. The checkerboard tiling obviously has
such a vector. In fact, it has infinitely many vectors with this property.

There is a very satisfying way to obtain tilings of the plane which are aperiodic, and this
is by using a substitution and inflation rule. First, let’s agree on some terminology: tilings
of the plane are made up of tiles which only meet at their boundaries. I will also assume
here that for each tiling we consider there are only finitely many tile types. That is, there is
a finite collection of tiles {t1, . . . , tk}, called the prototiles, such that any tile on the tiling is
an unrotated copy of one of the ti. The set of prototiles for the checkerboard tiling in Figure
1 consists of two elements, the white tile and the red tile. The set of prototoles for the chair
tiling4 in Figure 1 has 4.

An inflation and substitution rule on a set of prototiles is the operation of inflating each
prototile by the same factor λ > 1 and then tiling the bigger tiles with copies of the original
prototiles. Figure 2 denotes the inflation and substitution rules used to generate the tilings
in Figure 1.

https://tilings.math.uni-bielefeld.de/
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Figure 2. The inflation and substitution rule behind the checkerboard tiling (left), and the one behind
the chair tiling (right). The first one has inflation factor λ = 2 while the other one has λ = 4.

The good news is that by having an inflation and substitution rule we can get a tiling
of the plane. The idea is roughly the following: pick a prototile and apply the inflation
and substitution rule to obtain a finite collection of tiles which tile an enlarged copy of the
starting prototile whichwe call a patch. Now if we apply again the inflation and substitution
rule to each tile in the patch we obtain an even larger copy of the original prototile which
is tiled by copies of the prototiles. Doing this procedure arbitrarily many times, we obtain
arbitrarily large patches which are tiled by copies of prototiles.5 At this point, one has to
be somewhat careful in taking limits. I will not go into details of how this is done but rest
assured there are ways of taking limits so that the limiting object will be a tiling of the plane.
The resulting tilingmay ormaynot be aperiodic. Indeed, the two examples in Figure 2 show
an inflation and substitution rule which lead to tilings of the plane but one is aperiodic and
the other one is not (this will be discussed in Section 1.3).

In the study of tilings, it is very convenient to see them as objects organized through
a hierarchical structure. Roughly speaking, a hierarchical structure is a way of organizing
finite sets of tiles into bigger collections of tiles, called supertiles and organizing supertiles
into even larger supertiles and so on. Instead of formally defining them, it is easier to see
them through examples.

Consider a tiling constructed through an infinite application of an inflation and sub-
stitution rule as described above. The first step was to apply the inflation and substitution
rule to a prototile to obtain a rescaled copy of the prototile which is tiled by copies of pro-
totiles. If we do this to every prototile, we obtain all possible level-1 supertiles (see Figure
2 again). Applying the inflation and substitution rule to any level-1 supertiles we obtain
level-2 supertiles, which are tiled by level-1 supertiles the way level-1 supertiles are tiled by
prototiles. Applying the inflation and substitution rule n times, we obtain level-n supertiles.
By construction, level-(n − 1) supertiles tile level-n supertiles the same way prototiles tile
level-1 supertiles. As such, it is natural to consider prototiles as level-0 supertiles.

The structural hierarchy of a tiling then refers to the way level-(n − 1) supertiles come
together to form level-n supertiles for all n ≥ 0. Figure 3 shows the first three hierarchical
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Figure 3. A level-2 supertile tiled by level-1 supertiles which are tiled by level-0 supertiles. Level-1
supertiles are tiled according to the rule in Figure 3.

levels for the chair tiling in Figures 1 and 2. For tilings constructed by the application of
an inflation and substitution rule as above, the hierarchical structure is independent of
the level of hierarchy since, for any n>1, level-(n − 1) supertiles tile level-n supertiles the
same way prototiles tile level-1 supertiles. Tilings which have this property are called self-
similar. Thus, tilings constructed from an inflation and substitution rule are self-similar
tilings.

1.2. One-dimensional tilings

Now that we have introduced and developed enough language to discuss tilings, we want to
focus on tilings in one dimension, that is, tilings of the real number line. All the motivating
examples above were in two dimensions, but one-dimensional tilings are somewhat easier
to treat for two reasons:

(i) All tiles in a tiling are intervals. Unlike tiles in higher dimensions, the shape of tiles
is all the same. We can distinguish two tiles in a tiling by the length of the tile and, if
applicable, also by label. The same applies to supertiles.

(ii) Tiles in a one-dimensional tiling are ordered. That is, if we have two tiles t1 and t2 then
either t1 comes before t2, t2 comes before t1, or t1 = t2. One cannot easily make this
type of statement for tilings in higher dimensions.
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Figure 4. Two patches corresponding to different one-dimensional tilings. Although the colours are
the same, these two examples are not meant to be related in any way as they were constructed using
different rules.

In order to talk about one-dimensional tilings, it suffices the describe the location of every
tile in a tiling. Since all tiles are intervals, we adopt the convention that we will use the
left endpoint of a tile to describe its location and, if needed, its type. Before this gets too
abstract, consider the one-dimensional tilings in Figure 4.

The first example in Figure 4, contains a piece of a tiling where all tiles have length 1, but
with 4 different prototiles which are distinguished by colours. The second example contains
a piece of a tiling also with 4 prototiles, ordered as {green, red, yellow, blue}, but they each
have respective length (proportional to) {τ , 1, τ , 1}, where τ = 1+√

5
2 is the golden ratio.

Without loss of generality, we can assume that any tiling has a tile whose left endpoint
sits at 0 in the number line, and so the entire tiling can be described by an infinite string of
symbols, e.g.

· · ·ADCDDABC.CBADDCDABAABC · · · ,

where the dot . was placed in the corresponding spot where two tiles surround 0 in
the number line. This type of symbolic description is possible for any one-dimensional
tiling. However, when the tiles do not all have the same length, some information is lost.
Therefore, to describe a one-dimensional tiling one needs:

(i) (without loss of generality) to assume the left endpoint of a tile coincides with 0 in
the real number line,

(ii) a bi-infinite string of symbols representing the different tile types in the order in
which they appear in the tiling, with the location of a dot . in the string representing
which tiles surround the origin,

(iii) and a bi-infinite collection of increasing points �={. . . , p−2, p−1, p0=0, p1, p2, . . .}
representing the location of the left endpoint of every tile.

In any example where all tiles have the same length, we can take � = � · Z, where � is the
length of the tiles.

1.2.1. The group of tile lengths
Suppose that a one-dimensional tiling T has finitely many prototiles {t1, . . . , tk} with
lengths {�1, . . . , �k}. The group of tile lengths is formally the set of all integer linear
combinations of the lengths of the prototiles:

�T :=
{

τ =
k∑

i=1
ni�i : (n1, . . . , nk) ∈ Zk

}
,
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which is the group generated by differences of the semigroup of tile lengths:

�+
T :=

{
τ =

k∑
i=1

ni�i : ni ∈ Z, ni ≥ 0

}
,

that is, �T = �+
T − �+

T . The hierarchical structure of one-dimensional tilings implies that
the length of a level-n supertile is an element of �T for all n. The set �T is the free abelian
group of rank k with generators {�1, . . . , �k}, and so we can add and subtract elements of
�T . In the first example in Figure 4, all the tiles have the same length, and so the group is
�T = � · Z, where � is the length of any of the prototiles.

1.2.2. Self-similar one-dimensional tilings
Constructing self-similar tilings in one dimension is simple. As in any dimension, it can
be done through an inflation and substitution rule. However, because the geometry of the
tiles in one dimension is much simpler than in higher dimensions, it suffices to describe
the substitution rule. The inflation factor can be extracted from it.

Let us see this through examples. As described above, to each one-dimensional tiling
made up of finitely many prototiles one can assign a bi-infinite string of symbols which
describes the order of the tiles. So we can start by describing a symbolic substitution rule,
for example, these two:

A �→ AADBC, B �→ BABDC, C �→ CDABB, D �→ DADBC, (1)

or

A �→ ADA, B �→ BA, C �→ CBC, D �→ DC. (2)

Starting with the symbol A, iterating the symbolic substitution leads to the following
sequence of words6:

A �→ AADBC �→ AADBCAADBCDADBC BABDCCDABB �→ · · ·

for (1), or for (2):

A �→ ADA �→ ADADCADA �→ ADADCADADCCBCADADCADA �→ · · · .

The question is now how to turn the symbolic substitution into a geometric one. That
is, how can we find the right lengths of each prototile and an inflation factor that will
respect the combinatorics of the substitution rule. Let us begin with the symbolic sub-
stitution in (1). We are looking for four non-negative numbers �A, �B, �C, �D, which will
be the lengths of each prototile, and a factor λ > 1 such that, for example, when we inflate
a prototile tA by a factor of λ we obtain a level-1 supertile of length λ�A which is tiled by
2 copies of tA and one copy of each tB, tC, tD (this is dictated by the symbolic substitution
rule A �→ AADBC in (1)). Doing this sort of analysis for each prototile, the quantities we
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see that need to satisfy

2�A + �B + �C + �D = λ�A

�A + 2�B + �C + �D = λ�B

�A + 2�B + �C + �D = λ�C

�A + �B + �C + 2�D = λ�D.

(3)

Letting

M =

⎛
⎜⎜⎝

2 1 1 1
1 2 1 1
1 2 1 1
1 1 1 2

⎞
⎟⎟⎠ and �̄ = (�A, �B, �C, �D),

the system (3) is equivalent to the eigenvalue/eigenvector equationM�̄ = λ�̄ for thematrix
M above defined by the substitution. This matrix is called the substitution matrix*7 The
substitution matrixM of a symbolic substitution has entryMij equal to the number of tiles
of type jwhich fit into the inflated copy of a tile of type i. It is straight forward to verify that
�A = �B = �C = �D = 1 and λ = 5 is a solution to (3). This is an example of a constant-
length substitution, that is, a substitution for which there is an n>1 such that each symbol
is substituted into exactly n symbols. Whenever this happens, the corresponding inflation
factor is λ = n.

Doing the same for the symbolic substitution described in (2), we obtain

2�A + �D = λ�A

�A + �B = λ�B

�B + 2�C = λ�C

�C + �D = λ�D

(4)

which has solution

λ = τ 2 = 3 + √
5

2
,

which is a real number approximately 2.618033989, and (�A, �B, �C, �D) = (τ , 1, τ , 1).
Assigning the colour green to tiles of type A, red to tiles of type B, yellow to tiles of type C,
and blue to tiles of typeD, the reader can compare the symbolic substitutions in (1) and (2)
to the tilings in Figure 4.

Note that the solutions to the equations of the formM�̄ = λ�̄ above only make geomet-
ric sense if λ > 1 and each entry in �̄ = (�A, �B, �C, �D) is a positive real number. Were we
just lucky in obtaining solutions that make geometric sense? Are there other solutions that
make geometric sense?

Definition 1.1: A square matrixM is primitive if there is a k ∈ N such thatMk has all pos-
itive entries. A symbolic substitution rule is a primitive substitution rule if its substitution
matrix is a primitive matrix.

Theorem ((Perron–Frobenius)): Let M be a primitive matrix of non-negative integers.
Then there exists a unique vector v̄PF, of length 1 and with all positive entries, and λPF > 1
such that Mv̄PF = λPFv̄PF. These are called the Perron–Frobenius eigenvalue/eigenvector.
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Figure 5. Self-similar hierarchical structure for the examples in this section.

Corollary 1.1: For any primitive substitution rule, there is a unique choice of lengths (up to
scaling) and inflation factor defining a self-similar one-dimensional tiling.

In this case, the inflation factor λ will always be a real Perron number (Lind, 1987), that is,
a positive algebraic integer whose Galois conjugates are less than |λ| in modulus. As such,
when M is primitive, the equation Mv = λPFv forces the group of tile lengths �T to be a
subgroup (up to a scaling) of the finitely generated group Z[λ], the ring of integers defined
by λ. Note that if the lengths of the prototiles for a primitive substitution are {�A, . . . , �k},
then the lengths of different level-n supertiles are {λn�A, . . . , λn�k}.
Let us revisit the examples from Figure 4. Depicted in Figure 5 are patches from the tilings
obtained from the substitutions in (1) and (2) along with patches of the tilings made up
of level-n supertiles for small values of n. Since the first example of Figure 4 has the same
length (whichwithout loss of generalitywe assume is 1) for all tiles and the inflation factor is
λ = 5, every level-n supertile has length 5n. For the second example, the tiles have a length
either 1 or τ . Using the fact that τ is a solution to x2 − x − 1 = 0, it follows that level-1
supertiles have length either λ · 1 = τ 2 · 1 = τ + 1 or λ · τ = τ 3 = τ(τ + 1) = τ 2 + τ =
2τ + 1, where the last equality follows from the fact that τ 2 = τ + 1 by definition. Both of
these quantities are elements of the group � = Z[τ ] = Z + τZ of tile lengths.

Let me now note that it follows that the group of tile lengths of a one-dimensional,
primitive, self-similar tiling depends only on the substitution matrix. So any two symbolic
substitution rules with the same substitutionmatrix will have the same set of prototiles and
thus the same group of tile lengths. As an example, we can re-arrange the symbols in the
symbolic substitutions given in (1):

A �→ ADBCA, B �→ BADCB, C �→ CDBAB, D �→ DABDC

or, for (2):

A �→ AAD, B �→ BA, C �→ BCC, D �→ DC.

Doing so gives new symbolic substitutions but the substitution matrix remains the same.
As such, the tile lengths of the corresponding tilings and the group of tile lengths do not
change.
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1.3. Aperiodicity versus repetitivity

Let us go back to the two-dimensional examples in Figure 1. As discussed, both of these are
constructed from an inflation and substitution rule. Although one grows to be a periodic
tiling while the other one grows to be aperiodic, both of them are repetitive. This means
that for any patch that you may see in the tiling there is an R such that the ball of radius
R around any point contains a translated copy of the patch. It is a theorem in symbolic
dynamics that any primitive substitution rule will give a repetitive tiling T . In other words,
for any patch in T there is a R>0 such that there is a copy of that patch found in T within
a distance of R of any tile in T . What I want to emphasize here is that a tiling can repeat
but not repeat periodically.

2. The algebraic structure of metre

The goal of this section is to connect the tiling notions mentioned in earlier sections with
the basic objects of musical metre. By doing this not only will we put the notion metre
in Western music on some abstract mathematical footing, and this abstract mathematical
footing will allow us make the concept of metre more general.

Let T be a one-dimensional tiling with finitely many prototiles and �T = �+
T − �+

T its
group of tile lengths. From such a tiling we define:

Bars/measures defined by T level-1 supertiles of T ;
Beats/note duration defined by T elements of a semigroup �′+ ⊂ R+ with [�′+ −

�′+,�T ] < ∞, that is, �′+ generates a group within which �T has finite index. This is
a choice, not something canonically defined from a tiling, although it is restricted by
it;

Tempo defined by T A tiling T automatically defines a tempo as follows. The frequency
of tiles in a given tiling T is quantity

freq(T ) = lim
N→∞

number of tiles of T in [0,N]
N

,

which exists inmany cases, including tilings constructed fromprimitive substitutions.
The tempo defined by T is

tempo(T ) = 60 · freq(T )
beats
minute

. (5)

If the endpoints of the tiles areZ (as in classicalWesternmusic), then the frequency is
1. Thus, the 60 appearing in (5) reflects the convention that time flows with unit time,
in which case the tiling defined Z has a tempo of 60 beats per minute. In the case of
Z, then this also defines a pulse. However, for tilings with a more complicated group
of tile lengths, a tempo will be defined without a pulse necessarily being defined.

Let us now examine how we can fit basic Western metre into this framework, the most
basic of which is a 4

4 time signature with tempo defined by ˇ “ = t > 0. Consider the sym-
bolic substitution rule A �→ AAAA which very evidently has expansion constant λ = 4.
The resulting (periodic) tiling is, up to a scalar multiple, given byZ. Every level-1 supertile
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(i.e. an interval of 4Z ⊂ Z) is tiled by 4 tiles, and so each bar is equally divided into 4 units
of equal length. The right scaling of Z to obtain the tempo ˇ “ = t is by 60/t since

tempo
(
60
t

Z

)
= 60 · freq

(
60
t

Z

)
beats
minute

= 60 · t

60
beats
minute

= t
beats
minute

.

Note that the associated group for this metre structure is �T = 60
t Z which is generated by

the semigroup �+
T = 60

t N.
It remains to define the beats in this metre structure. As defined above, it remains to

define a group �′ which contains 60
t Z as a subgroup of finite index, and with the property

that it is generated by a positive semigroup �′+ which contains the basic beats. There are
several ways of doing this (in fact, infinitely many). Here is the example of one, picked to
allow both triplets and beats as short as one-hundred-and-ninety-twoth notes: letting

�′
+ = λ−2

3
�+
T = 1

423
60
t

N = 5
4t

N (6)

then this semigroup of beats divides the basic notes (which are tile lengths ˇ “ = |t|) in up to
24 · 3 = 3 · 16 = 48 beats of equal duration. From these we can generate eighth notes (� =
ˇ “/2 = |t|/2), sixteenth notes ( ˇ “) = �/2 = ˇ “/4 = |t|/22), thirty-second notes ( ˇ “* = ˇ “/23 =
|t|/23), sixty-fourth notes ( ˇ “+ = ˇ “* /2 = ˇ “/24 = |t|/24), triplets (/3), and even one-hundred-
and-ninety-twoth notes ( ˇ “

24·3 ).
Now consider a primitive self-similar one-dimensional tiling T with inflation factor λ,

where we assume that the minimal polynomial defining λ is of degree d. In this case, we
have that �T ⊂ s · Z[λ] for some s>0. The natural choices for the semigroup of beats are
ones of the form �′+ = q−�s · Zn[λ] for some q, �, n ∈ N, where

Zn[λ] =
〈
λd−1, . . . , 1, λ−1, . . . , λ−d, λ−d−1, . . . , λ−2d, . . . , λ−nd

〉
,

that is, Zn[λ] is the group of integer combinations of powers of λ, where the powers range
from−nd to d−1.Note thatwhenλ is an integer then�′

T = q−�s · Z for some q ∈ Nwhich
is multiple of λ. These generalize the choice of semigroup (6). As such, the defining alge-
braic object for a time signature is the (finitely generated) module s · Z[λ] for an algebraic
integer λ. In the next two sections, we will show how one can use these notions concretely
in making music.

3. Quasimusic

I now want to talk about how one can take all that has been covered and produce sounds
that could potentially be called music. Let me start with an example.

Consider the tilings from the top half of Figure 5, which were constructed using the
substitution rule in (1). The three tilings shown in the top half of Figure 5 are: the tiling
obtained by (1), the tiling by level-1 supertiles of the same tiling and the tiling by level-2
supertiles of the same tilings. These three tilings fit nicely together, that is, for each level-
1 supertile, there is a collection of tiles which tile it, for each level-2 supertiles there is a
collection of level-1 supertiles which tile it, etc. As such the length of each level-k supertile
is a (positive) element of our group of tile lengths, and so it corresponds to a beat. As such,
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one can assign a note or sound to each colour of each of the tilings, and play them together.
For example, assigning (using keyboard notation)

green = C5, blue = G5, red = D5, and yellow = F5 (7)

for the top tiling,

green = A3, blue = G4, red = E4, and yellow = F4

for the second tiling (level-1 supertiles), and

green = C3, blue = F2, red = A2, and yellow = G2

for the third tiling (level-2 supertiles), one obtains somethingwhich sounds like this. Note
that since the substitution rule from which this was made gives a tiling where all tiles have
equal length, there is a common beat, emphasizing the rationality of the underlying group.
One could give this a time signature of 55.

The left endpoints for the tiling which gives this example is s · Z, where s>0 is defined
by the tempo. Recalling Figure 5, we have that λ = 5 for this example, the bars/measures
are level-1 supertiles, or 5s · Z. By choosing any q ∈ N, we can defined the semigroup of
beats to be sq−1 · N ⊂ s · Q+ making the beat structure of this metre rational.

Before moving to irrational metres, let us adopt more terminology and tricks. First, let
me point out that in the examples above, we made the simple rule of assigning a specific
sound to a particular tile. This applied not only to level-0 tiles (a.k.a. tiles) but also to level-1
and level-2 supertiles. This is the simplest variant of a general composition rule.

Definition 3.1: Let T be a one-dimensional tiling. A T -equivariant composition rule (or
pattern-equivariant composition rule) is a way of assigning sounds to a level-i supertile
depending on the level-(i + j) supertile in which it sits, for all j ≤ k and some fixed k.

Note that the assignments startingwith (7) areT -equivariant for the first example in Figure
5. The name is inspired by T -equivariant functions, which are important functions used
in the theory of aperiodic tilings (Kellendonk, 2008). One can consider a T -equivariant
composition rule as a T -equivariant function taking values in a set of sounds. The use of
sequences in the assignment of sounds, such as those given in Carey and Clampitt (1996),
Callender (2013) and Ong (2020), are T -equivariant. The next section gives some tools for
giving T -equivariant composition rules in some particular metre, rational or irrational.

4. Writing in q−�s · Zn[λ]

So you have a favourite primitive substitution which gives you a primitive substitution
matrixM and therefore a metre structured by a group � ⊂ q−�s · Zn[λ], for some �, q, n ∈
N and where λ is the Perron–Frobenius eigenvalue of M. You also know that M does not
correspond to a single substitution but to all substitutions whose substitution matrix isM.
How can we continue to “compose” in �?

There are two immediate tricks that we can use to expand our list of substitutions which
will yield metre structures defined by the same group �. The first is done by packing
more elements into supertiles, while the other allows us to extend the number of symbols

https://soundcloud.com/user-7600984/raxmichter
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while staying in �. A third trick, which aims to achieve a phasing effect, can also be done
by exploiting the algebraic structure of the group associated to a tiling. It is easy to find
variations of each of these tricks, so these are just starting points.

4.1. Trick 1: dilating the inflation

The first one follows the observation that by multiplying the eigenvalue/eigenvector
equation Mv = λv by an integer k>1 we obtain the eigenvalue/eigenvector equation
(kM)v = (kλ)v, so that the inflation factor for any substitution rule with substitution
matrix kM is kλ. This new substitution matrix has the same Perron–Frobenius eigenvec-
tor v, and so the tile lengths remain the same for the new list of substitution rules with
substitution matrix kM. One can also take powers of the substitution matrix Q to obtain
matrices for other substitutions with the same group. An example of this is using thematrix
M defined by

M =
(
2 1
1 1

)
(8)

which we know satisfies

Q2 =
(
1 1
1 0

)2
= M,

and so both of these matrices have Perron–Frobenius eigenvector (τ , 1) and so the asso-
ciated group here is Z[τ ] = Z + τZ (recall that τ = (1 + √

5)/2). Some readers may
recognize the matrix Q as the matrix corresponding to the Fibonacci substitution, which
explains the appearance of τ .

4.2. Trick 2: expand and swap

Suppose we are working with substitutions given by (8) but we want to expand the num-
ber of symbols while working within the same time signature group. One way to do this
would be to expand a substitution given by (8) by, first, taking two copies of M and cre-
ating M∗ = M ⊕ M. This, for example, would correspond to a substitution rule formed
from two ‘disjoint’ substitution rules:

A �→ ABA, B �→ BA, C �→ CDC, D �→ DC. (9)

The Perron–Frobenius eigenvector for this substitution is (τ , 1, τ , 1), meaning that pro-
totiles A and C have length τ , whereas B and D have length 1. However, any substitution
with matrixM∗ has two disjoint components, which makes the substitution not primitive.
To make it primitive, we can swap letters whose prototiles have the same length which
would make the substitutionM∗ primitive, e.g.

A �→ ADA, B �→ BA, C �→ CBC, D �→ DC, (10)

which is in fact the substitution rule in (2) and we see how it was constructed: we’ve
expanded from substitutions on 2 symbols with group Z[τ ] to substitutions on 4 sym-
bols with the same group. We can even combine both tricks and use the matrixM2 ⊕ M2
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to obtain a substitution

A �→ ABACDABA, B �→ BCACB, C �→ CDCABCDC, D �→ DACAD (11)

which also has the same group.

4.3. Trick 3: phasing

The use of phasing was popularized in modern Western music through the work of Steve
Reich. In this subsection, I will illustrate how the mathematical structure behind metre, in
the self-similar case, motivates a couple of ways to obtain a phasing effect.

Phasing usually is done by startingwith two voices in unison playing a repetitivemelody.
As an example, let us assume that the repetitive melody is given by the symbolic string
w0 = ABACDABA and so we can consider the orbit of this string under the simplest of
cyclic permutations:

w1 = BACDABAA,w2 = ACDABAAB,w3 = CDABAABA,w4 = DABAABAC,

w5 = ABAABACD,w6 = ABAABACD, and w7 = AABACDAB.
(12)

Suppose a note is assigned to each symbol and that all notes have the same length (e.g.
quarter notes). Two voices then start playing ABACDABA repeatedly and in unison.

The phasing can be done from here in two qualitatively different ways:

Phasing in space (a.k.a. phase shifting) This type of phasing is achieved by having the sec-
ond voice going through the cyclical permutations of the starting phrasewhile the first
voice repeats the starting phrase. For example, for the symbolic stringswi above, if we
denote the top line by the first voice and the bottom line by the second voice, this
would look something like

w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0w0
w0w0w0w0w1w1w2w2w3w3w3w4w4w4w5w5w6w6w7w7w7w7w0w0w0w0,

which is the type of structure that the first part of Steve Reich’s Piano Phase has. If w′
0

is another symbolic string of the same length as w0, then a similar thing can be done
by going through the cyclic permutations ofw′

0 overw0, which is how the second part
of Reich’s Piano Phase is put together.

Phasing in time (a.k.a. rhythm shifting) This is achieved by having the second voice
change its tempo so that the two voices become out of phase.

Let me now explain how we can approach both types of phasing using the constructions
from above.

4.3.1. Phase shifting
The easiest thing one can do to obtain phasing in space is to shift a repetitive tiling T , along
with the metre it defines, by an element �+

T . This will obtain a phase shifting effect.
Amore interesting phase shifting can be obtained as follows: starting with one primitive

symbolic substitution rule one canmake aminor local modification of it to obtain a second
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one. Byminormodification, I mean change the order of at least two letters which appear in
the substitution of a symbol. For example, consider the following two symbolic substitution
rules, the first of which was created using the same technique used to construct (11):

A �→ ABACBAFA
B �→ ADCBA
C �→ AFDBCECA
D �→ CDEFA
E �→ ACEFDBCA
F �→ DCBCA

and

A �→ ABACBAFA
B �→ ADCBA
C �→ BCECAAFD
D �→ CDEFA
E �→ ACEFDBCA
F �→ CBCAD

Note that the second is obtained from the first by permuting the order of some of the strings
obtained from the substitution. This local change, as the substitution rule gets iterated,
makes the symbolic strings become “out of phase” every now and then. Making a pattern-
equivariant choice of sounds for the first substitution and superimposing the two (meant
to come out of phase occasionally), sounds like this.

4.3.2. Rhythm shifting
Taking the metre defined by some self-similar tiling T with expansion constant λ > 1,
there is a natural way to do rhythm shifting. Since this is done by modifying the tempo of
one of the voices, and since the tempo is defined by the frequency of a tiling, rhythm shifting
can be obtained by changing the frequency of a tiling, and this is done by deforming the
tiling and changing the geometry of some of its tiles.

Here is a concrete way to do so using the expansion factor λ. Let �T = {pi}i ⊂ R be
the set defined by the left endpoints of tiles in T , assuming without loss of generality that
p0 = 0. Pick 0 < pn1 < pn2 < pn3 in�T . Let f : [pn1 , pn2 ] → [pn1 , pn3 ] be a function such
that

f (pn1) = pn1 , f ′(pn1) = 1, f ′(x) ∈ (1, λ) for x ∈ (pn1 , pn2),

f (pn2) = pn3 , and f ′(pn2) = λ.
(13)

Then such a function induces a deformation the tiling T to obtain a new tiling T ′ = �(T )

by sending the set of left endpoints �T to the set of left endpoints �T ′ = �(�T ) of T ′
defined by

�(x) =
⎧⎨
⎩

x if x ≤ pn1
f (x) if x ∈ [pn1 , pn2 ]
λx + pn3 − λpn2 if x ≥ pn2

A function f : [pn1 , pn2 ] → [pn1 , pn3 ] which achieves this is the function

f (x) =
∫ x

0
1 + (s − pn1)κ

(pn2 − pn1)κ
(λ − 1) ds with κ = (pn2 − pn1)(λ − 1)

pn3 − pn2
− 1,

which the reader may verify satisfies (13). The relationship between T and its deformation
T ′ are

(i) The tilings T and T ′ are indistinguishable before the point x = pn1 ,
(ii) The tiles between pn1 and pn3 in T ′ are a continuous deformation of the tiles between

pn1 and pn2 inT , scaling the geometry of level-0 supertiles to that of level-1 supertiles,

https://soundcloud.com/user-7600984/phase-space-1


178 R. TREVIÑO

(iii) The tiles of the deformed tiling T ′, after x = pn3 , have the geometry of level-1
supertiles of the tiling T , as they are scaled by λ.

As such, the tempo of anything played based on T ′ slows down after pn1 . One can do a sim-
ilar construction which speeds up tempo by deforming a tiling which, after certain point,
brings the geometry of level-k supertiles to that of level-(k − 1) supertiles. The composi-
tion of two deformations, one which speeds up the tempo and one which slows it down,
has the overall effect of phase shifting, i.e.shifts in space.

4.4. Some examples

This track takes the substitution in (11) and lays down sounds on a pattern-equivariant
way. Another take on the same substitution is given by this track, which takes the above
substitution and lays drums and chords in a pattern-equivariant way. Note that since the
relevant group for the substitution (11) contains a scalar multiple of Z[τ ], giving it a truly
irrational metre.

Another example of the construction above is the following. Consider the real solution
(and largest in modulus) of the polynomial equation x3 − x − 1 = 0. This is the so-called
plastic ratio

p = 3

√
9 + √

69
18

+ 3

√
9 − √

69
18

.

The companion matrix8 for that polynomial is

S =
⎛
⎝0 0 1
1 0 1
0 1 0

⎞
⎠ ,

which has a Perron–Frobenius eigenvector of the form (p∗, p, 1)with eigenvalue p, for some
algebraic number p∗. We now employ the same trick which we used to obtain (10) from (9)
to double the number of symbols while keeping the tile lengths in the same group defined
by the plastic ratio. That is, there is a way of applying Trick 2 from Section 4.2 in such a
manner to obtain the following matrix

S =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 1
0 0 1 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
1 0 0 0 0 1
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
.

Finally, the matrix S6 is the substitution matrix for the following symbolic substitution

A �→ AFBF, B �→ BCDCECD, C �→ CAEFE
D �→ DCEC, E �→ EFAFABF, F �→ FBCBD,

which has expansion factor p6. Assigning sounds in a pattern-equivariant way, we obtain
this track.

https://soundcloud.com/user-7600984/m2oplusm2
https://soundcloud.com/user-7600984/m2oplusm2v2
https://soundcloud.com/user-7600984/plastic
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Note that in this last example, I started with a specific algebraic number p and
constructed a substitution rule related to it. This generalizes easily and provides a way to
write in an algebraicmetre related to the real root of any polynomialP(x) = xn − anxn−1 −
· · · − a1x − a0 with integers ai ≥ 0 as long as the companion matrix for P(x) is primitive.
This generalizes further for any Perron number, see Lind (1987, § 3).

Notes

1. Since I am completely ignorant of the structure of other musical traditions, I am narrowing my
claim here in acknowledgement of this ignorance and not claiming that these properties are
unique to the Western musical tradition. I would be delighted to learn whether or not the ideas
here can also be adapted to non-Western musical systems.

2. It has also been claimed, and strongly disputed, that the intricate artwork in Islamic archi-
tecture over centuries and over a large geographic area has underlying aperiodic structure
(Bonner, 2017; Cromwell, 2015).

3. Sturmian sequences are non-periodic sequences with the lowest possible complexity.
4. This is not the chair tiling, that is, it is not the substitution rule which is called “the chair tiling”

in the tiling literature, but a variation. The canonical chair tiling has an expansion factor of 2
whereas the variation here has an expansion factor of 4.

5. The curious reader may want to verify the following: after n steps applying the inflation and
substitution rule, we obtain patches which are tiled by roughly λ2n tiles.

6. Note that if a letter is substituted into a word which begins with the same letter, the words
obtained by applying the substitution rule stabilize.

7. Some people follow the convention thatwouldmake thismatrix the transpose of the substitution
matrix.

8. A companion matrix Mp for a polynomial p(x) is the matrix A such that its characteristic
polynomial is p(x). One can check that x3 − x − 1 is the characteristic polynomial os S above.
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