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Abstract. This paper studies various aspects of inverse limits of locally expanding affine linear
maps on flat branched manifolds, which I call flat Wieler solenoids. Among the aspects studied are
different types of cohomologies, the rates of mixing given by the Ruelle spectrum of the hyperbolic
map acting on this space, and to solutions of the cohomological equation in primitive substitution
subshifts for Hölder functions. The overarching theme is that considerations ofα-Hölder regularity
on Cantor sets go a long way.

1. Introduction and statement of results

In his book on thermodynamic formalism [Rue04], D. Ruelle introduced the concept of Smale
spaces, which intended to axiomatically generalize the concept of a smooth hyperbolic map to the
setting of compact metric spaces. This general framework was a unified theory under which many
types of chaotic systems could be included. Some of the systems included under this umbrella
are Anosov systems, basic sets of Axiom A systems, mixing shifts of finite type, hyperbolic toral
automorphisms, etc. One of the many features shared by these systems are the existence of
stable and unstable sets, generalizing the concept of stable and unstable manifolds found in some
smooth systems. Later, Wieler [Wie14] characterized Smale spaces with zero dimensional stable
sets as inverse limits satisfying certain conditions.

This paper studies various aspects of inverse limits of locally expanding affine linear maps on
flat branched manifolds, which I call flatWieler solenoids since they are a subclass of the types
of Smale spaces classified by Wieler. They are spaces which are in a sense of intermediate type:
one one extreme, Anosov maps are defined on smooth manifolds whereas mixing subshifts of
finite type are defined on totally disconnected sets. Flat Wieler solenoids lie somewhere between
these two extremes and it is this intermediate position that makes them particularly interesting.
Although this is a subclass of Wieler’s more general classification, it is a class with a lot of rich
examples. In particular, it includes the tiling spaces of self-similar tilings, or tilings built using a
substitution rule. They are also related to primitive substitution systems in symbolic dynamics.

Let me be more precise (all the following terms are defined in §2): let Γ be a flat branched
manifold of dimension d > 0 and γ : Γ → Γ be a locally expanding affine linear map. This means
that γ has constant derivative Dγ ∈ GL(d,R) outside the branch points of Γ, with smallest
eigenvalue λ0 satisfying |λ0| > 1. The inverse limit of the pair (Γ, γ) is

Ωγ := {(z0, z1, z2, . . . ) ∈ Γ∞ : zi = γ(zi+1) for all i ≥ 0} .

This is a flat Wieler solenoid. It has a local product structure of the form Bε × C where Bε is
the ε-ball of dimension d and C is a Cantor set. It becomes a Smale space when paired with the
“hyperbolic” map Φ : Ωγ → Ωγ defined by applying γ to every coordinate of z ∈ Ωγ . Under
this map, the Cantor sets in the local structure become stable sets and the Euclidean components
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become the unstable sets. Under suitable conditions, Ωγ is a foliated space with each leaf dense
in Ωγ and homeomorphic to Rd.

Although Ωγ is not a manifold, it still has a rich topological and geometric structure. First,
the Čech cohomology can be computed as the direct limit of the cohomologies of Γ under the
induced map γ∗. Another way to recover this topological information à la de Rham is to consider
the set of functions with the highest possible regularity on Ω, consider differential forms with
coefficients in this space of functions, and then compute the cohomology of this complex of forms
defined by the natural leafwise de Rham differential operator [KP06]. The space of functions
which serves this role are the leafwise C∞, transversally locally constant functions, denoted by
C∞tlc(Ω). These functions have the highest regularity in the smooth direction (C∞) as well as the
highest regularity in the transverse, totally disconnected direction (locally constant).

One of the motivations behind the paper is a lack of good spaces of functions on Ωγ of in-
termediate regularity. The usual tricks afforded by Sobolev spaces on smooth manifolds are not
immediately available in this setting since it is not clear how they can afford an accounting of the
regularity of a function in the totally disconnected direction. I propose that looking at the Hölder
regularity in the totally disconnected direction can get us started in working with spaces of func-
tions with intermediate regularity. Unlike Euclidean spaces, the space of α-Hölder functions on
a Cantor set is non-trivial for all α > 0 and thus α-Hölder functions do supplant the notion of
regularity in this setting.

To get a grasp on a good space of smooth functions on Ω, in §2.1 I define the set Sr
α of functions

on Ω which are roughly described as functions which are Cr in the leaf direction and α-Hölder in
the transverse direction. This is how one can handle different degrees of regularity in the smooth
and non-smooth directions of the space Ω, respectively. It will be shown that Sr

α is in a sense
dense in the space Cr

α of leafwise Cr functions which are α-Hölder in the transverse direction in
up to r derivatives.

The concept ofα-Hölder functions implicitly makes reference to a metric onΩ and so a function
which is α-Hölder in one metric may be α′-Hölder in another metric for some α′ ̸= α. In these
types of spaces, there is a natural metric in reference to which all statements will be made. One of
the properties of this metric is that, for any leafwise first order differential operator ∂ and f ∈ Sr

α,
the derivative satisfies ∂f ∈ Sr−1

α+1. In other words, leafwise differentiation reduces leafwise
regularity, but increases transverse regularity. It seems to me like this has gone unnoticed, and
there is much to gain from this observation.

Let H∗r,α be the cohomology of the complex of leafwise smooth forms with coefficients in Sr
α.

The first result gives a lower bound on the regularity of functions in this complex above which
the usual real cohomology of Ω can be recovered.

Theorem 1.1. Let Ω be a flat Wieler solenoid and H∗r,α(Ω) the cohomology of tangential forms on
Ω with coefficients in Sr

α(Ω). If r ∈ N and α > 1 then

H∗r,α(Ω)
∼= Ȟ∗(Ω;R).

This theorem should remind one of de Rham regularization. Indeed, part of the proof uses de
Rham regularization (to find bounds for r). However, more needs to be done to ensure that α > 1
guarantees that the cohomology is finite dimensional. The first immediate application of this
theorem is for the speed of ergodicity of functions in Sr

α for r ∈ N and α > 1. This essentially
follows from the arguments in [ST18] and it is discussed in §3.1. It improves previous results on
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deviations of ergodic integrals in that it increases the set of functions for which the deviation
results hold.

As mentioned above, there is a self-homeomorphism Φ : Ωγ → Ωγ which makes a flat Wieler
solenoid a Smale space. This map preserves an absolutely continuous probability measure µ and
is topologically mixing [AP98, Proposition 3.1]. The second application of the careful study of
transverse Hölder regularity is to the speed of mixing of the map Φ : Ω → Ω. In order to do this,
the notion of the Ruelle spectrum has to be defined.
Definition 1.1. Let Φ : Ω → Ω be a map preserving a probability measure µ and F a space of
bounded functions on Ω. Let I be a finite or countable set , Λ = {λi}i∈I a set of complex numbers
with |λi| ∈ (0, 1] such that for any ε > 0 there are only finitely many i such that |λi| > ε, and let
{Ni}i∈I be non-negative integers. Then Φ has Ruelle spectrum Λ with Jordan block dimension
{Ni} on F if, for any f, g ∈ F and ε > 0, there is an asymptotic expansion∫

Ω

f · g ◦ Φn dµ =
∑
|λi|≥ε

∑
j≤Ni

λn
i n

jci,j(f, g) + o(εn)

where ci,j(f, g) are nonzero bilinear functions of f and g of finite rank.
Note that these asymptotics give precise information on the rates of mixing. Moreover, if

f ∈ F is an eigenfunction for Φ with eigenvalue ν and the essential spectrum for Φ∗ is reduced
to {0}, then ν ∈ Λ. Thus the search for the Ruelle spectrum reduces to the search of generalized
eigenfunctions for the pullback operator defined by Φ, called the transfer operator L = Φ∗, on a
good space of functions F . To find a good F , the use of the so-called anisotropic Banach spaces
will be employed.

Computing the Ruelle spectra of systems has become fashionable in the last half-decade, es-
pecially through the use of anisotropic Banach spaces. In [FGL19], using transfer operator tech-
niques and anisotropic Banach spaces, the authors noticed that the Ruelle spectrum for linear
pseudo-Anosov maps on Riemann surfaces is composed entirely from cohomological informa-
tion. Using different techniques, this was soon reproved by [For20], and that point of view was
extended to the case of non-linear pseudo-Anosov actions on surfaces [For22]. Those works were
followed by [BKL22] and the recent PhD dissertation of D. Galli – both using transfer operators
and anisotropic Banach spaces – where the focus has been to extract resonances from the coho-
mology spectrum in a larger class of non-linear systems. They concluded that the Ruelle spectrum
contains cohomological information, but is not necessarily made up exclusively of cohomological
information. The results here are of that type.

I will define anisotropic Banach spaces Br,α
m as the completion of the space of tangential m-

forms with coefficients in Sr
α with respect to an anisotropic norm, and then study the spectrum

of the transfer operator on these spaces. The spaces of functions for which part of the Ruelle
spectrum can be identified will be B∞,α

0 =
⋂

r>0 B
r,α
0 for α large enough.

Let htop be the topological entropy of γ : Γ → Γ and χ− the smallest Lyapunov exponent of
γ. Let σ− be the set of eigenvalues ν of Φ−1∗ : Ȟd(Ω;R) → Ȟd(Ω;R) which satisfy log |ν| <
χ− − htop. Note that when d = 1 this is the set of all contracting eigenvalues.
Theorem 1.2. Let Φ : Ω → Ω be the topologically mixing map on the solenoid which preserves the
absolutely continuous probability measure µ. For α > htop

χ−
and r ∈ N:

(i) if d = 1, then the set of eigenvalues for L = Φ−1∗ acting on Br,α
0 contains σ− \ {e−htop}.

In addition, if ν is an eigenvalue in Br,α
0 and k < α − htop

χ−
, then e−khtopν is an eigenvalue
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in Br+k,α−k
0 . It follows that if F :=

⋂
α>0,r>0

Sr
α, then the Ruelle spectrum for functions in F

contains the set of numbers of the form e−khtopν with ν ∈ σ− \ {e−htop} and k ∈ N.
(ii) If d = 2, then the set of eigenvalues for L = Φ−1∗ acting on Br,α

0 contains σ− \ {e−htop}. If
S∞α :=

⋂
r>0

Sr
α, then the Ruelle spectrum for functions in S∞α contains the set σ− \ {e−htop} .

Remark 1.1. Some remarks:
(i) Since the tiling spaces of self similar tilings are flat Wieler solenoids [AP98] of this type,

Theorem 1.2 gives the rate if mixing of the substitution rule on these spaces. This can be
interpreted as the rates of decay of correllations of the different scales of the tiling.

(ii) Let me connect the one-dimensional case with the Pisot conjecture. The hypotheses of
the homological Pisot conjecture assert that σ−1 \{e−htop} = ∅ (see the survey [ABB+15]).
Thus, under the hypothesis of the homological Pisot conjecture I find no obstruction to
having super exponential decay of correlations, which is a feature of algebraic systems.
Thus, showing that σ− \ {e−htop} is the entire spectrum would be very valuable.

(iii) Examples of two-dimensional solenoids for which σ−1 \ {e−htop} ≠ ∅ include the tiling
spaces of self-similar tilings which are weakly mixing under the translation action along
leaves, such as the Godrèche-Lançon-Billard tiling, and one of Danzer’s sevenfold tilings.
See [BG13, §6.5] for more details.

Finally, another application of the study of transverse Hölder regularity in these spaces is to
the solution of the cohomological equation in the setting of primitive substitution subshifts. Let
A be a finite set and let ϱ be a primitive substitution rule on A (all of these terms are defined in
§5). Let σ : Xϱ → Xϱ be the minimal subshift defined by this substitution rule. Let Hα(Xϱ) be
the space of α-Hölder functions on Xϱ with respect to a natural ultrametric. Let H0

α(Xϱ) be the
quotient of Hα(Xϱ) with respect to the equivalence relation f ∼ g if there exists a u ∈ Hα−2(Xϱ)
such that f − g = u ◦ σ − u. This is the α-Hölder cohomology of Xϱ.

Theorem 1.3. Let A be a finite set and let ϱ be a primitive substitution rule on A. If α > 2 then
H0

α(Xϱ) is finite dimensional. That is, if α > 2 there are finitely many obstructions to finding a
solution u ∈ Hα−2(Xϱ) to the cohomological equation f = u ◦ σ − u for f ∈ Hα(Xϱ).

Remark 1.2. Some remarks:
(i) The locally constant, integral cohomology has been thoroughly studied for minimal Can-

tor systems. More precisely, the structure of the set of equivalence classes of C(X,Z) up
to coboundaries is a fundamental invariant in the theory of orbit equivalence for Can-
tor minimal systems [GPS95]. However, as far as I know, the problem of solving the
cohomological equation for varrying degrees of regularity on Cantor sets has not been
considered before.

(ii) The ideas leading up to the theorem above do not only hold for substitution systems. In
fact, with the right use of Oseledets theorem, I expect the theorem above to hold for a
large class of minimal Cantor systems, including a large class of so-called S-adic systems.
This, along with applications to interval exchange maps, will be pursued in a future paper.

(iii) It is unclear whether a loss of regularity of order 2 is optimal. Although a loss of 1 may
be necessary, a loss of 2 may be a feature of the way the theorem is proved. I would like
to see a proof of this statement which does not rely on embedding Xϱ into a solenoid.
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This paper is organized as follows. Background material is covered in §2, including the function
spaces Sr

α, which as far as I know are new. Section §3 deals with proving that the r, α cohomology
are isomorphic to the usual real cohomologies (Theorem 1.1) for r, α large enough. Section §4 is
devoted to the study of the Ruelle spectrum: anisotropic Banach spaces of forms are introduced
and the action of the transver operator on them is studied leading to Theorem 1.2. Finally, in §5,
the solutions of the cohomological equation on Xϱ are studied by relating them to solutions of
the cohomological equation on one dimensional solenoids, proving Theorem 1.3.

Acknowledgements. I am in debt to Daniele Galli, Scott Schmieding, Giovanni Forni, and Oliver
Butterley for very useful discussions during the preparation of this paper. This work was partially
supported by grant 712227 of the Simons Foundation, as well as DMS grant 2143133 from the
National Science Foundation.

2. Wieler solenoids of flat branched manifolds

Let Γ be a flat branched manifold of dimension d. This means that Γ is obtained by gluing
several polytopes of dimension d along their faces in such a way that every k-dimensional face
meets another of the same dimension. This branched manifold has a natural CW structure and
flat metric; denote by Ik its kth-skelleton. Let B be the branching set, that is the set of points x
such that a small ball around x is not homeomorphic to an open euclidean ball. If B = ∅ then
Γ is a manifold. The focus here will be in cases where B ̸= ∅. Setting Bk := (Ik \ Ik−1) ∩ B, it
is worth pointing out that every point on Bk is a k-dimensional flat manifold and, as such, it has
well defined tangent and cotangent spaces.

Let γ : Γ → Γ be a locally expanding and surjective map with constant compatible derivative.
This means that the derivative map is non-singular and on Id \ Id−1 the derivative Dγ can be
identified with some Dγ ∈ GL(d,R). Let λ1, . . . , λd > 1 be the eigenvalues of Dγ and set
λ0 = mini |λi| and λ = detDγ .

The solenoid defined by γ is the space
(1) Ω = Ωγ = {z̄ = (z0, z1, . . . ) ∈ Γ∞ : γ(zi+1) = zi for all i ≥ 0}.
It can also be defined as an inverse/projective limit: the inverse limit
(2) Ωγ = lim

←
(Γ, γ)

can easily be seen to match the first definition. This is a flat Wieler solenoid since it is part of
Wieler’s classification of Smale spaces with totally disconnected stable sets (this structure will be
examined below). The γ-solenoid comes equipped with a probability measure which is compatible
with the inverse limit structure. To describe this more precisely, denote by πk : z̄ 7→ zk the
projection onto the kth coordinate, and denote by Γk to be the kth copy of Γ: Γk = πk(Ω). Let
µk be the normalized Lebesgue measure on Γk induced from the flat metric. Since γ preserves
Lebesgue measure, it follows that γ∗µk = µk−1. Thus if we equip Ω with µ := ⊗kµk, we have
that πk∗µ = µk for every k.

Two assumptions need to be made on the pair (Γ, γ):
(i) The map γ : Γ → Γ is primitive: there exists a K > 0 such that for any two faces

F1, F2 ⊂ Γ there is a point x ∈ F1 such that γK(x) ∈ F2.
(ii) The map γ : Γ → Γ forces the border. Although I will not discuss what is means here,

an implication of this assumption will be pointed out below.
(iii) The map γ is recognizable: roughly speaking, all d-cells have distinct images.
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The solenoid Ω has a local product structure of Bε(0)× C, where Bε(0) is an ε-ball in Rd and
C is a Cantor set. Indeed, if z = (z0, z1, . . . ) ∈ Ω, then points close to z come from either varying
the z0 coordinate by a small amount (this is parametrized by Bε), or by varying in π−10 (z0), which
amounts to picking one of (potentially several) points in γ−1(z0), then one of (potentially several)
points in the γ-preimage of that point, and so on. It follows that since λ > 1, this sequence of
choices naturally gives a Cantor set.

There are two complementary dynamical systems defined onΩ. First, there is a self-homeomorphism
Φ : Ω → Ω which preserves the special measure µ. In coordinates, the map is defined by

Φ : (z0, z1, z2, . . . ) 7→ (γ(z0), z0, z1, . . . )

which, by construction, preserves the measure µ. The inverse is obtained by deleting the first
coordinate.

For z ∈ Ω define its kth transversal set as
C⊥k (z) := {z′ ∈ Ω : z′i = zi for all i ≤ k} .

The sets C⊥0 (x) are all ultrametric sets which will endowed with the metric

(3) d(y, z) = dx(y, z) := λ
−k(y,z)
0 ,

where k(y, z) is the smallest integer i such that yi ̸= zi; equivalently, the smallest integer i
such that C⊥i (y) ̸= C⊥i (z). These transversal sets can be seen to be the local stable set of x: if
y ∈ C⊥0 (x), then d(Φn(x),Φn(y)) → 0 as n → ∞. The local unstable sets can also be seen, in the
coordinates Bε × C around z, to be the Euclidean balls Bε × {c} for c ∈ C.

Secondly, there is the Rd action on Ω given by translating along unstable sets. More precisely,
for z ∈ Ω with z0 = π0(z) not in a branch of Γ and t ∈ Rd of small norm, the translation of
z = (z0, z1, z2, . . . ) by t is
(4) φt(z) := (z0 − t, z1 −D−1γ t, z2 −D−2γ t, . . . ),

which is seen to preserve the condition (1). The assumption that (Γ, γ) forces the border implies
that this extends to an action of Rd on Ω; the primitivity condition implies that this action is
minimal, that is, every orbit is dense. Finally, the recognizability condition implies that the action
is free and so every orbit is homeomorphic to Rd. Under these conditions, the action of Rd is
uniquely ergodic [Sol97, Theorem 3.1], where the unique invariant probability measure is µ.

Since the solenoid Ω has a local product structure of Bε(0)×C⊥k (x), where Bε(0) is an ε-ball,
the Φ-invariant measure µ has a local product structure of Leb × νx,k, where Leb is Lebesgue
measure and νx,k is a measure on a local transversal C⊥k (x). This measure assigns to each local
transversal C⊥k (x) the measure νx,k(C

⊥
k (x)). Since {νx,k} forms a system of transverse invariant

measures for the Rd action in the sense of [BM77], they will all be denoted by ν unless not doing
so leads to ambiguity. Define

ν̂x,k := νx,k(C
⊥
k (x)).

Lemma 2.1. There exists a Cµ > 1 such that for any x ∈ Ω and k ∈ N0,

C−1µ λ−k ≤ ν̂x,k ≤ Cµλ
−k.

Proof. Since Φ preserves µ, µ has local product structure Leb × ν, and the Lebesgue measure
scales as λ = det(Dγ) =

∏
λi under Φ, ν scales as λ−1 under Φ. So it follows that ν(C⊥1 (x)) =

ν(Φ(C⊥0 (Φ
−1(x)))) = λ−1ν(C⊥0 (Φ

−1(x))). By compactness there are finitely many values of
ν(C⊥0 (Φ

−1(x))), and so iterating the calculation gives the desired bound. □
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2.1. Function spaces. Let Cr(Γ) be the space of functions on the branched manifold which
are Cr smooth at the branch set. More precisely, let ik : Bk → Γ be the inclusion of the kth-
dimensional part of the branched set. A first order differential operator X on Γ is one for which
there exists a first order differential operator Xk on Bk which can be extended to X on Γ, that is,
so that that Xki

∗
k(f) = i∗k(Xf) for all k. In other words, Cr(Γ) is the set of functions f ∈ Cr(Γ)

such that

(5)
Cr(Γ) Cr(Bk)

Cr−1(Γ) Cr−1(Bk)

i∗k

X Xk

i∗k

for some Xk and for all k > 0. Thus a first order differential operator X can be identified with a
d-tuple {X1, . . . , Xd} of first order differential operators, where Xk on Bk satisfies (5).

Another way to characterize Cr(Γ) is as follows: since Rd acts on Ω by translation along
unstable leaves, any v ∈ Rd defines the leafwise differential operators ∂v as

(6) ∂vf(z) = lim
s→0+

f(z + sv)− f(z)

s
.

Let Cr(Ω) be the set of leafwise-Cr functions on Ω with respect to the family of operators
∂e1 , . . . , ∂ed . Thus f ∈ Cr(Γk) if and only if π∗kf ∈ Cr(Ω). Let

Cr
tlc(Ω) :=

⋃
k

π∗kC
r(Γk) and C∞tlc(Ω) :=

⋃
k

π∗kC
∞(Γk).

For a h ∈ C∞tlc(Ω) and fixed p ∈ Ω, the function fh(t) := h ◦ φt(p) : Rd → R is called p-
equivariant.

For a function f on Ω define the transversal Hölder seminorm

(7) |f |⊥α = sup
x∈Sγ

sup
x ̸=y∈C⊥

0 (x)

|f(x)− f(y)|
d(x, y)α

,

and let H⊥α (Ω) be the Banach space of transversally α-Hölder functions with norm

(8) ∥f∥⊥α = ∥f∥C0 + |f |⊥α .

Note that for any 0 < β < α there is a compact inclusion H⊥α ⊂ H⊥β .

Remark 2.1. Since the local transversals C⊥k are totally disconnected sets, the spaces H⊥α (Ω) are
non-trivial for every real α > 0. This is a significant difference from stable sets which are smooth,
and α here controls the analogous quantitity for smoothness in totally disconnected direction of
Ω.

Let Cr(Ω) denote the set of functions f on Ω such that ∂vi1 · · · ∂virf is continuous for any
choice of r vectors vij in an orthonormal basis {v1, . . . vd} of Rd. Finally, define for r ∈ N and
α > 0,

(9) Cr
α(Ω) =

f ∈ Cr(Ω) ∩H⊥α (Ω) :
∑

0≤p≤r

∑
|i|=p

∥∂if∥C0 + |∂if |⊥α < ∞


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to be the space of functions which not only are Cr smooth in the leaf direction but also whose
derivatives up to order r are transversally α-Hölder. Here the traditional multiindex notation
i = (i1, . . . , id) has been used, with |i| = i1 + · · ·+ id. This is a Banach space under the norm

(10) ∥f∥r,α :=
∑

0≤p≤r

∑
|i|=p

∥∂if∥C0 + |∂if |⊥α .

Given a function f ∈ L1(Ω) and k ∈ N0 := N ∪ {0} set

(11) Πkf(x) := ν̂−1k,x

∫
C⊥

k (x)

f(z) dνk,x, ∆kf := f − Πkf, and δkf := Πkf − Πk−1f.

These functions will be crucial for most results of this paper, so let me take some time to dicuss
how one can think of them. Any f ∈ L1

µ(Ω) is a function of infinitely many variables, since this is
how the solenoid is defined. The function Πkf is obtained by integrating along local transversals
and consequently Πkf is transversally locally constant. This means that Πkf only depends on
finitely many coordinates, that is, there is a function gk ∈ L1(Γ) such thatΠkf = π∗kgk. Thus, Πkf
can be thought of as the best approximation to f if we can only consider the first k coordinates.
We will see below that Πkf → f in a satisfying sense as k → ∞.

If Πkf is an approximation to f using the first k coordinates, then ∆kf is the error in this ap-
proximation. If Πkf → f in some sense, then one should expect that ∆kf → 0 in the same sense
(this will come up later). Finally, if Πkf is an approximation to f using the first k coordinates,
then fk := δkf is the best approximation to f using only the kth coordinate. So after setting
Π−1f = 0, the approximation Πkf can be written as the finite sum

Πkf =
k∑

i=0

δkf =
k∑

i=0

fk

and so if Πkf → f then f can be written as a sum f =
∑

fk in a canonical way. These of
course are rough descriptions of how one can think of these functions but since they will appear
regularly in this paper one should might as well have a good way to think of them.

A more precise description of what is happening involves conditional expectation. For k ∈ N0,
let Ak be the σ-algebra generated by the preimages π−1k (A) of Borel sets A ⊂ Γk. This is an
increasing sequence of sub σ-algebras of the Borel σ-algebra A of Ω. The conditional expectation
E(·|Ak) : L1(Ω,A, µ) → L1(Ω,Ak, µ) map coincides with Πk, that is, for any f ∈ L1(Ω, µ),
E(f |Ak) = Πkf , and νk,x is the conditional measure of this conditional expectation. By the
increasing martingale theorem [EW11, Theorem 5.5], Πkf → f almost everywhere and in L1.

Using the notation fk = δkf from above, for r, α ≥ 0, let

Sr
α(Ω) :=

{
f : Ω → R : f =

∑
k≥0

fk,
fk = π∗k(f

(k)) for some f (k) ∈ Cr(Γ) and
there exists a Cf such that ∥f (k)∥Cr(Γ) ≤ Cfλ

−kα
0

.

}
Let me make two comments which motivate the definition of these function spaces. The first one
comes from the algebraic setting: if S is the inverse limit of locally expanding affine linear maps
of Td, then L2

µ is spanned by a Fourier basis, and so one needs to quantify the decay rates of the
Fourier coefficients to capture degrees of regularity. This is precisely what was done in [Tre23],
and the generalization of this idea leads to the space Sr

α as defined above. The second reason is
that the representation of a function as a sum of pullbacks of distinct functions on approximants
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is canonical: if f = π∗0f
(0) then f is transversally locally constant, and so δkf = 0 for all k > 0

and so the f is uniquely represented as a sum of finitely many terms.

Proposition 2.1. For the spaces Sr
α(Ω) and C

r
α(Ω) defined above with r ∈ N, α > 0:

(i) for any v ∈ {v1, . . . , vd}, if f ∈ Sr
α(Ω) then ∂vf ∈ Sr−1

α+1(Ω),
(ii) for any ε ∈ (0, α), Sr

α(Ω) ⊂ Cr
α(Ω) densely with respect to the norm of Cr

α−ε(Ω).

Remark 2.2. I would like to remark on the surprising feature (i): taking leafwise derivatives
increases regularity in the transverse direction. Since this is the Hölder regularity, this depends
on the metric used. The form adopted here is the one which corresponds to the natural choice of
transversal metric in (3), as well as using the same number λ0 in defining the spaces Sr

α(Ω).

Proof of Proposition 2.1. For (i), if f ∈ Sr
α then using (4) and (6)

∂vf(z) =
∑
k≥0

∂vfk(z) =
∑
k≥0

π∗k
(
∇f (k) ·D−kγ v

)
(z)

and
∥∇f (k) ·D−kγ v∥Cr−1(Γk) ≤ λ−k0 ∥f∥Cr(Γk) ≤ Cfλ

−k
0 λ−αk0 = Cfλ

−(α+1)k
0 .

So ∂vf ∈ Sr−1
α+1(Ω).

For (ii), for f ∈ Cr
α, consider the approximations Πkf . For every k, these approximations are

all in Sr
α for any α > 0 since they are transversally locally functions. What needs to be proved is

that for any multiindex i with |i| ≤ r

∥∂iΠkf − ∂if∥C0 + |∂iΠkf − ∂if |⊥α−ε → 0

as k → ∞.
Let i be one such multiindex. Then

|∂iΠkf(x)− ∂if(x)| = ν̂−1k,x

∣∣∣∣∣
∫
C⊥

k (x)

∂if(z)− ∂if(x) dνk,x

∣∣∣∣∣
≤ ν̂−1k,x

∫
C⊥

k (x)

∣∣∂if(z)− ∂if(x)
∣∣ dνk,x ≤ C∂ifλ

−αk
0

(12)

and so ∥∂iΠkf−∂if∥C0 → 0. Here it was used that not only f but its derivatives are transversally
α-Hölder.

Let x ∈ Ω and suppose that a, b ∈ C⊥ℓ (x). Then if ℓ ≤ k:

|(Πk∂
if − ∂if)(a)− (Πk∂

if − ∂if)(b)|
λ
−(α−ε)ℓ
0

≤ λ
(α−ε)ℓ
0 2C∂ifλ

−kα
0 ≤ 2C∂ifλ

−εk
0 ,

where (12) was used in simplifying the numerator. If ℓ > k:

|(Πk∂
if − ∂if)(a)− (Πk∂

if − ∂if)(b)|
λ
−(α−ε)ℓ
0

= λ
(α−ε)ℓ
0 |∂if(a)− ∂if(b)| ≤ C∂ifλ

−εk
0 .

And so |∂iΠkf − ∂if |⊥α−ε → 0, so the proof is concluded. □
9



3. Transversal Hölder cohomology for Wieler solenoids

Wieler solenoids, being defined as an inverse limit of surjective and locally-expaning maps
have the advantage that their (Čech) cohomology can be explicitly computed. At the most basic
level, this can be done with coefficients in Z through

Ȟ∗(Ω;Z) = lim
n→∞

(
Ȟ∗(Γ;Z), γ∗

)
.

By the universal coefficient theorem and universality of inverse limits, the cohomology with real
coefficients is

(13) Ȟ∗(Ω;R) = lim
n→∞

(
Ȟ∗(Γ;R), γ∗

)
.

Likewise, since there is a free Rd action on Ω, there is an associated Lie-algebra cohomology
defined as follows. Let X1, . . . , Xd be an orthonormal frame of Rd. Define the operators ∂i using
Xi as in (6). Let C∞(Ω; ΛRd∗) the space of leafwise smooth sections of Ω to ΛRd∗, the graded
exterior algebra of Rd∗. In other words C∞(Ω; ΛRd∗) is the space of functions f : Ω → ΛRd∗

such that ∂i1 · · · ∂ikf ∈ C∞(Ω; ΛRd∗) for any finite collection of indices i1, . . . , ik.
Let d : C∞(Ω; ΛkRd∗) → C∞(Ω; Λk+1Rd∗) be the exterior differential operator defined as

follows. Let {dx1, . . . , dxd} denote the dual frame to {X1, . . . , Xd}. Then

d(fdxi1 ∧ · · · ∧ dxik) =
d∑

i=1

∂ifdxi ∧ dxi1 ∧ · · · ∧ dxik .

It is immediate to verify that this operator satisfies d2 = 0. Moreover, there is natural subcomplex
C∞tlc(Ω; Λ

kRd∗) of sections with tlc coefficients.

Definition 3.1. The Lie-algebra cohomologyH∗(Ω) of Ω is the cohomology of the differential
complex (C∞(Ω; ΛRd∗), d). That is,

H•(Ω) :=
ker
{
d : C∞(Ω; Λ•Rd∗) → C∞(Ω; Λ•+1Rd∗)

}
Im {d : C∞(Ω; Λ•−1Rd∗) → C∞(Ω; Λ•Rd∗)}

.

The transversally locally constant (tlc) Lie-algebra cohomology is the cohomology of the sub-
complex of tlc functions:

H•tlc(Ω) :=
ker
{
d : C∞tlc(Ω; Λ

•Rd∗) → C∞tlc(Ω; Λ
•+1Rd∗)

}
Im {d : C∞tlc(Ω; Λ

•−1Rd∗) → C∞tlc(Ω; Λ
•Rd∗)}

.

Finally, there is one more type of cohomology which is relevant here: since for p ∈ Ω a form
η ∈ C∞(Ω; Λ∗Rd∗) defines a p-equivariant form ωη(t) := φ∗tη : Rd → Λ∗Rd∗, the p-equivariant
cohomologyH∗p (Ω;R) is defined as the cohomology of this subcomplex of the de Rham complex
of Rd.

Kellendonk and Putnam [KP06] proved that the p-equivariant cohomology is isomorphic to
the tlc Lie-algebra cohomology, which in turn is isomorphic to the Čech cohomology (13) with
coefficients in R. In general it is not true that H•tlc(Ω) is isomorphic to H•(Ω). These two coho-
mologies capture two extremes of regularity in the transverse direction: functions in C∞ satisfy
|f |⊥0 < ∞ whereas g ∈ C∞tlc has |g|⊥α < ∞ for all α ≥ 0. Thus it is natural to ask how much
regularity is needed in the transverse direction to recover the real Čech cohomology. This is the
transversally Hölder cohomology.

10



The rest of the section is devoted to proving that instead of looking at the cohomology of C∞tlc
sections, one could consider the cohomology of sections with coefficients in Sr

α(Ω) or Cr
α. To do

this, a name for this type of cohomology is needed.

Definition 3.2. The space Ψm
r,α is the space of m-forms η : Ω → ΛmRd∗ with coefficients in Sr

α.
That is, an element Ψm

r,α can be written as

η =
∑
I∈Im

ηIdxI ,

where each dxI is a m-form of the form dxi1 ∧ · · · ∧ dxim , and ηI ∈ Sr
α for all I ∈ Im. Let

Zm
r,α := ker

{
d : Ψm

r,α → Ψm+1
r−1,α+1

}
and Bm

r,α := Im
{
d : Ψm−1

r+1,α−1 → Ψm
r,α

}
,

and define the Sr
α-cohomology of Ω as

H∗r,α(Ω) := Z∗r,α/B∗r,α,

which is the Lie algebra cohomology with coefficients in Ψ∗r,α.

Theorem 3.1. Fix r ∈ N and α > 1 and let η ∈ Zm
r,α. Then there exists η′ ∈ C∞tlc(Ω; Λ

mRd∗) and
ω ∈ Ψm−1

r+1,α−1 such that η − η′ = dω. That is, for r ≥ 1 and α > 1:

H∗r,α(Ω) ∼= H∗tlc(Ω)
∼= Ȟ∗(Ω;R).

The rest of this section is devoted to the proof of this theorem. First we start by reviewing de
Rham cohomology for branched manifolds, then de Rham regularization for branched manifolds,
and finally we put all of this together in the inverse limit structure.

Let H∗r,tlc(Ω) be the Lie-algebra cohomology with Cr
tlc coefficients. That is, two forms η1, η2 are

in the same cohomology class if there exists a ω ∈ Cr
tlc such that η1 − η2 = dω.

Proposition 3.1. For r ∈ N, H∗r,tlc(Ω) ∼= H∗tlc(Ω).

Proof. The goal is to show that for any closed η ∈ Cr
tlc(Ω; Λ

∗Rd∗) there is a η′ ∈ C∞tlc(Ω; Λ
∗Rd∗)

and ω ∈ Cr
tlc(Ω; Λ

∗Rd∗) such that η − η′ = dω. This will be done through the use of de Rham
regularization [dR84, §III.15] applied to p-equivariant cohomology, since it is isomorphic to Lie-
algebra cohomology.

Let p ∈ Ω and let η : Rd → Λ∗Rd∗ be a p-equivariant form with Cr coefficients. This means
there is a Rη > 1 such that if the tiling around the point x in a ball of radius Rη is the same as
the one around y in a ball of radius Rη then η(x) = η(y).

Pick ε ∈ (0, 1/2) and let U = {Ui}i∈N be a cover of Rd such that:
(i) U is locally finite;

(ii) Ui is a Euclidean ball of radius 1 + ε for all i;
(iii) U is p-equivariant with radius 6Rη: if Ui is centered at xi and y has the same pattern as

xi does inside a ball of radius 6Rη centered at y, then y is the center of some Uj ∈ U .
This type of cover is called a p-equivariant cover adapted to η. Now de Rham regularization
can be invoked [dR84, Theorem 12 in §III.15]: there exist operators R and A such that

(i) Rη − η = dAη + Adη,
(ii) Rη ∈ C∞(Rd; Λ∗Rd∗), and

(iii) if η ∈ Cr(Rd; Λ∗Rd∗), then Aη ∈ Cr(Rd; Λ∗Rd∗).
11



Thus if dη = 0 then dRη = 0, and they differ by the exact Cr form dAη. It remains to show that
Aη is p-equivariant, that is, that is has something to do with Ω.

Since U is a p-equivariant cover adapted to η, if x, y ∈ Rd have neighborhoods of radius 6Rη

which are translation equivalent, then η ◦ φτ (x) = η ◦ φτ (y) for all τ such that ∥τ∥ ≤ 5Rη and
the union of the sets Ux

1 , . . . , U
x
k which contain x is a set which is translation equivalent to the

union of the sets Uy
1 , . . . U

y
k which contain y. As such the regularization at x is the same as the

one at y, that is, Aη(x) = Aη(y), which means that Aη is p-equivariant. □

Let Γ be a flat branched manifold of dimension d, where the set of branches is denoted by
B ⊂ Γ. Denote by Ik the k-skelleton of Γ. For each x ∈ Bk := B ∩ (Ik \ Ik−1) there is a natural
tangent space TxΓ of dimension k and a corresponding cotangent space. Let ∆k

ℓ be the set of
smooth ℓ-forms on Bk, on which there is the usual de Rham differential operator dk : ∆k

ℓ → ∆k
ℓ+1

and which are included into Γ using maps ik : Bk → Γ. To give the entire branched space a
smooth structure, consider the space of smooth maps

∆k(Γ) = {ω : Γ → ΛkRd∗}

with coboundary operators d : ∆k(Γ) → ∆k+1(Γ) satisfying dk ◦ i∗k = i∗k ◦ d for all k ≥ 0, that
is, the operators which are conjugated to dk by i∗k for all k:

(14)
∆ℓ(Γ) ∆k

ℓ (Bk)

∆ℓ+1(Γ) ∆k
ℓ+1(Bk)

i∗k

d dk

i∗k

Another way to characterize ∆m(Γ) is the set of m-forms η on Γ such that π∗kη is a C∞ m-form
on Ω.

Definition 3.3. The de Rham cohomology H∗dR(Γ) of the flat branched manifold Γ is the
cohomology of the complex (∆∗(Γ), d) of smooth forms satisfying (14).

Sadun [Sad07] proved that H∗dR(Γ) is isomorphic to the real Čech cohomology of Γ.

Lemma 3.1. For ρ ∈ [1,∞], let ∥ · ∥′ : H∗ρ,tlc(Ω) → R be a norm. Then there exists a K depending
on the norm and on γ such that

∥[π∗kη]∥′ ≤ K∥η∥Cr(Γk)

for any closed η ∈ ∆∗(Γk) which is Cr, k ≥ 0, and r ∈ [1, ρ].

Proof. Since H i
tlc(Ω) is finite dimensional, by Proposition 3.1, it will suffice it to prove for some

norm. Let ∥ · ∥ be some norm on Hi(Γk;R) and denote by ∥ · ∥ the dual norm on H i(Γk;R). That
is, for a closed i-form η ∈ ∆i(Γk):

∥[η]∥ = sup
0 ̸=[c]∈Hi(Γk;R)

∣∣∣∣ [η]([c])∥[c]∥

∣∣∣∣ = sup
0̸=[c]∈Hi(Γk;R)

∥[c]∥−1
∣∣∣∣∫

c

η

∣∣∣∣ .
The ith skeleton of Γk is finitely generated and so there is a collection of representative cycles
c1, . . . , cm of a basis of Hi(Γk;Z). Thus, for an integral class [c] =

∑m
j=1 aj(c)cj ∈ Hi(Γk;Z) the

12



absolute value of
∫
c
η can be bounded as∣∣∣∣∫

c

η

∣∣∣∣ =
∣∣∣∣∣

m∑
j=1

aj(c)

∫
cj

η

∣∣∣∣∣ ≤
m∑
j=1

|aj(c)|

∣∣∣∣∣
∫
cj

η

∣∣∣∣∣ ≤ ∥η∥Cr(Γk)

m∑
j=1

|aj(c)|Voli(cj)

≤ K ′
(
max

j
Voli(cj)

)
∥[c]∥∥η∥Cr(Γk) ≤ K ′′∥[c]∥∥η∥Cr(Γk),

(15)

where K ′ comes from the equivalence of the L1 norm and ∥ · ∥ in Hi(Γk;R), and Voli(cj) is the
i-dimensional volume of the cycle cj . Here it was used that

∫
cj
η can be bounded by the volume

of the cycle times the C1 norm of η. Thus it follows that

∥[π∗kη]∥ = ∥[η]∥ = sup
0̸=c∈Hi(Γk;R)

∥c∥−1
∣∣∣∣∫

c

η

∣∣∣∣ ≤ K∥η∥Cr(Γk)

for any r ≥ 1. □

The following completes the proof of Theorem 3.1.

Proposition 3.2. If r ∈ N, α > 1 then H∗r,α(Ω) ∼= H∗tlc(Ω).

Proof. Let η : Ω → Λ∗Rd∗ be a closed form with coefficients in Sr
α(Ω) with r ≥ 1 and α > 1.

By Proposition 3.1, it suffices to show that there is a form η′ ∈ H∗r,tlc(Ω) such that η − η′ = dω

for some ω with coefficients in Sr+1
α−1. By part (ii) of Proposition 2.1, for α − 1 to be positive it is

necessary that α > 1 which justifies the condition on α.
By the definition of Sr

α(Ω) for each k ≥ 0 there exists ηk ∈ ∆∗(Γk) such that η =
∑
k≥0

π∗kηk,

where there are infinitely many non-zero terms, as that would otherwise make η a tlc form. In
addition, without loss of generality, it can be assumed that ηk ̸= γ∗η′ for some η′ ∈ ∆∗(Γk−1).
Now define the sequence of forms

η(n) :=
n∑

k=0

π∗kηk.

Each of these forms is a closed tlc form. Indeed, since

dη = d

(∑
k≥0

π∗kηk

)
=
∑
k≥0

dπ∗kηk = 0,

each nonzero π∗kηk depends only on the kth coordinate and so the same is true for dπ∗kηk. Thus
dη = 0 means that dπ∗kηk = 0 for every k. It follows that η(n) has a tlc cohomology class
[η(n)] ∈ H∗r,tlc(Ω).

Observe that [η(n)] is a convergent subsequence. Indeed, by Lemma 3.1, for n > m > 0:∥∥[η(n)]− [η(m)]
∥∥ ≤

∥∥∥∥∥∑
k>m

[π∗kηk]

∥∥∥∥∥ ≤ K
∑
k≥m

∥ηk∥Cr(Γk) ≤ K ′Cηλ
−αm
0 .

Thus [η] should be assigned the cohomology class limn→∞[η
(n)] ∈ H∗r,tlc(Ω) and so the goal is to

find a tlc representative of this class and show that η is cohomologous to it.
Recall the eventual range

ERi(Ω) := (γ∗)βiȞ i(Γ;R) ⊂ Ȟ i(Γ;R),
13



where βi = dimH i(Γ;R). Any class c ∈ Ȟ i(Ω;R) is represented by a class in ERi(Ω) ⊂
Ȟ i(Γβi

;R). Since Ȟ i(Γ;R) is isomorphic to H i
dR(Γ) [Sad07, Appendix A], any class c ∈ H i

tlc(Ω)
has a representative π∗βi

ηc coming from the βth
i projection map.

Let π∗βi
η′k be the form cohomologous to π∗kηk and let

η(n) =
n∑

k=0

π∗βi
η′k = π∗βi

(
n∑

k=0

η′k

)
.

Then η(n) − η(n) = dωn for all n. In addition,

η(∞) := lim
n→∞

n∑
k=0

π∗βi
η′k = π∗βi

(
lim
n→∞

n∑
k=0

η′k

)
is a Cr tlc function which is cohomologous to η. □

3.1. Application: Deviations of ergodic averages. The spectrum ofΦ∗ : Ȟd(Ω;R) → Ȟd(Ω;R)
gives rates of convergence of ergodic integrals. This was first proved in [Sad11] in the self-similar
case and later in [ST18] in the self-affine case. The class of functions used in those results were
C∞tlc. Theorem 3.1 implies that the same rates of convergence can now be given for functions in
Sr
α for r ∈ N and α > 1. The statement will be provided here without proof as Theorem 3.1

allows the argument in [ST18] to carry over verbatim.
Before stating the theorem, some notation needs to be established. Denote by |ν1| > · · · >

|νr| > 0 the norms of the r distinct eigenvalues of the map Φ∗ acting on Hd. Let Ei be the
generalized eigenspaces for the action of Φ on Hd(Ω;R) induced by the map Φ∗ corresponding
to the eigenvalue νi. The subspaces Ei are decomposed as

Ei =

κ(i)⊕
j=1

Ei,j,

where κ(i) is the size of the largest Jordan block associated with νi, as follows. For each i, we
choose a basis of classes {[ηi,j,k]} with the property that ⟨[ηi,j,1], [ηi,j,2], . . . , [ηi,j,s(i,j)]⟩ = Ei,j and

(16) Φ∗[ηi,j,k] =

{
νi[ηi,j,k] + [ηi,j−1,k] for j > 1,
νi[ηi,j,k] for j = 1.

Definition 3.4. The rapidly expanding subspace E+(Ω) ⊂ Hd(Ω) is the direct sum of all gener-
alized eigenspaces Ei of Φ∗ such that the corresponding eigenvalues νi of Φ∗ satisfy

(17) |νi| ≥
λ

λ0

.

The subspace E++ ⊂ E+ consists of all vectors for which the inequality (17) is strict.

We order the indices of distinct subspaces of E+(Ω) as follows. First, we set I+ = I+,> ∪ I+,=

be the index set of classes [ηi,j,k] which form a generalized eigenbasis for E+(Ω), where the
indices in I+,> contains vectors corresponding to a strict inequality in (17) and the indices in
I+,= correspond to vectors associated to eigenvalues which give an equality in (17). The set
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I+,= can be empty but I+,> always has at least one element. The set I+ is partially ordered:
(i, j, k) ≤ (i′, j′, k′) if L(i, j, T )T dsi ≥ L(i′, j′, T )T dsi′ for T > 1, where

(18) L(i, j, T ) =

{
(log T )j−1 if νi satisfies (17) strictly
(log T )j if νi satisfies equality in (17)

and si =
log |νi|
log ν1

. The order does not depend on the indices k.
By passing to a power we can assume that Dγ ∈ GL+(d,R) = exp(gl(d,R)). Let a ∈ gl(d,R)

be the matrix which satisfies exp(a) = Dγ and let gt = exp(at). Letting B1 denote the unit ball,
define the averaging family {BT}T≥1 by
(19) BT = gσ log TB1,

where σ = d/ log detA. As such, we have that Vol(BT ) = Vol(B1)T
d. Let ρ = dimE+(ΩΛ).

Theorem 3.2. For r ∈ N and α > 1, there exist a constant Cγ and ρ Rd-invariant distributions
{Di,j,k}(i,j,k)∈I+ such that, for any f ∈ Sr

α(Ω), if there is an index (i, j, k) such that Di′,j′,k′(f) = 0
for all (i′, j′, k′) < (i, j, k) but Di,j,k(f) ̸= 0, then for T > 3 and any x ∈ Ωγ ,∣∣∣∣∫

BT

f ◦ φs(x) ds

∣∣∣∣ ≤ Cγ,fL(i, j, T )T
d
log |νi|
log λ .

Moreover, if Di,j,k(f) = 0 for all (i, j, k) ∈ I+Λ then

(20)
∣∣∣∣∫

BT

f ◦ φs(Λ) ds

∣∣∣∣ ≤ CfT
d
(
1− log |λ0|

log λ

)

for all T > 1.

4. Ruelle spectrum andqantitative mixing

An application of transverser Hölder cohomology is the construction of anisotropic Banach
spaces for solenoids. This section is dedicated to proving the quantitative mixing results for Φ.
To do this, it is necessary to introduce so-called anisotropic spaces of functions. I am particularly
inspired by [FGL19, BKL22] and the PhD dissertation of D. Galli, and so I will follow some of the
ideas there.

Anisotropic spaces are useful for various reasons, but one may want to know whether it is
necessary to go to that length to talk about speed of mixing for these types of maps. One can
get a quantitative rate of mixing using only Theorem 3.2, but it is not good enough to get precise
asymptotics.

To simplify matters a little, let us assume for the moment that Φ∗ has no Jordan blocks, Dγ has
no Jordan blocks and it is uniformly expanding. Theorem 3.2 establishes that

(21)
∫
BT

f ◦ φt(x) dt = Vol(BT )µ(f) +
d+∑
i=2

D+
i (f)Gi(T )T

d
log λi
log λ1 +O(|∂BT |),

where λ1 > λ2 ≥ · · · ≥ λd+ > 1 are the eigenvalues of Φ∗ : Hd
tlc(Ω) → Hd

tlc(Ω) which are
expanding, f ∈ Sr

α for r, α large enough, BT is the ball of radius T around the origin, D+
i ∈ (Sr

α)
′

are invariant distributions and Gi(T ) is some bounded function. Note that (4) implies that
(22) Φ ◦ φt = φAt ◦ Φ,
where A = Dγ is the expanding matrix along the unstable manifold of Φ.
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Take two functions f, g ∈ Sr
α, n ∈ N, consider the function f · g ◦Φn ∈ Sr

α and suppose p is a
fixed point of Φ. Then by (21) above:∫

BT

f ◦ φt(p) · g ◦ Φn ◦ φt(p) dt

= Vol(BT )µ(f · g ◦ Φn) +
d+∑
i=2

D+
i (f · g ◦ Φn)Gi(T )T

d
log λi
log λ1 +O(|∂BT |),

= Vol(BT )⟨f, g ◦ Φn⟩+
d+∑
i=2

c̄′i,n(f, g)Gi(T )T
d

log λi
log λ1 +O(|∂BT |),

(23)

where c̄′i,n(f, g) := D+
i (f · g ◦ Φn). Now consider a sequence of times of the form T = λm

0 and
solve for ⟨f, g ◦ Φn⟩:

⟨f, g ◦ Φn⟩ = 1

Vol(Bλm
0
)

(∫
Bλm0

f ◦ φt(p) · g ◦ Φn ◦ φt(p) dt+
d+∑
i=2

c′i,n(f, g)Gi(T )T
d

log λi
log λ1 +O(|∂Bλm

0
|)

)

V0λ
−dm
0

∫
Bλm0

f ◦ φt(p) · g ◦ Φn ◦ φt(p) dt+ λ−dm0

d+∑
i=2

ci,n(f, g)Gi(λ
m
0 )λ

m
i +O(λ−m0 )

V0λ
−dm
0

∫
Bλm0

f ◦ φt(p) · g ◦ Φn ◦ φt(p) dt+
d+∑
i=2

ci,n(f, g)Gi(λ
m
0 )

(
λi

λ1

)m

+O(λ−m0 ),

(24)

where V0 is the volume of the unit ball in Rd and recalling that λ = λd
0 = λ1. Now use equation

(22) and change of variables to rewrite the integral term:

⟨f, g ◦ Φn⟩ = V0λ
−dm
0

∫
Bλm0

f ◦ φt(p) · g ◦ φAnt ◦ Φn(p) dt+
d+∑
i=2

ci,n(f, g)Gi(λ
m
0 )

(
λi

λ1

)m

+O(λ−m0 )

= V0λ
d(n−m)
0

∫
B

λm−n
0

f ◦ φA−ns(p) · g ◦ φs(p) ds+
d+∑
i=2

ci,n(f, g)Gi(λ
m
0 )

(
λi

λ1

)m

+O(λ−m0 ).

(25)

If m = n then

⟨f, g ◦ Φn⟩ = V0

∫
B1

f ◦ φλ−n
0 s(p) · g ◦ φs(p) ds+

d+∑
i=2

c̄i,n(f, g)

(
λi

λ1

)n

+O(λ−n0 )(26)

Thus there is a speed of mixing which can be derived only from the result of deviations of ergodic
averages. However, it does not come with bounds for the terms c̄i,n(f, g) as a function of n,
making it hard to determine the speed of mixing. And so more is needed to derive precise results
on the speed of mixing of Φ. However, the calculation above already shows how the expanding
eigenvalues of Hd

tlc may play a role, and with more structure it is possible to derive speed of
mixing from the speed of ergodicity, see [For20].
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4.1. Anisotropic Banach spaces for flat Wieler solenoids. Let φ : Ω → ∧kT ∗Rd be a m-
form. Analogous to (7), let

(27) |φ|⊥α,m = sup
x∈Sγ

sup
x ̸=y∈C⊥

0 (x)

∥φ(x)− φ(y)∥
d(x, y)α

.

At first it may seem like φ(x)−φ(y) is not defined, as each summand lives on a different fiber of
the bundle. However, since the leaves of the foliation are flat and dense in Ω, parallel transport
makes this operation unambiguous. Define the space H⊥α,m of α-Hölder m-forms to be those for
which

(28) ∥φ∥⊥α,m := ∥φ∥C0 + |φ|⊥α,m < ∞.

This is a Banach space, and if α > β we have that H⊥α,m ⊂ H⊥β,m compactly. Denote by B⊥ε,m(α) ⊂
H⊥α,m the ε-ball with respect to (28). Note that B⊥1,m(α) ⊂ B⊥1,m(α− δ) for all δ small enough.

For the sake of convenience it will be assumed that Dγ has no Jordan blocks. As such, let
v1, . . . , vd be a normalized basis of Rd which are also eigenvectors for Dγ : Dγvi = λivi with
λi > 1 and λ = λ1 · · ·λd. Given this choice, for any i ∈ {1, . . . , d}, ∂i will denote the differential
operator ∂vi and for a multiindex i = (i1, . . . , id) we will denote by ∂i = ∂i1

1 · · · ∂id
d and |i| =

i1 + · · ·+ id. With this notation, let

|||η|||r,α,m :=
∑

0≤p≤r

sup
|i|=p

sup
φ∈B⊥

1,m(α+p)

∣∣∣∣∫
Ω

〈
φ, ∂iη

〉
dµ

∣∣∣∣ ,
and let Br,α

m be the completion of Ψm
r,α with respect to |||·|||r,α,m and set Λ = log λ

log λ0
.

To the uninitiated reader, it is worth pointing out that functions in the anisotropic Banach
spaces Br,α

m play two simultaneous roles, which become evident from the way the norm was
defined: first, they serve as functions in the Euclidean variable, whereas in the transversal variable
they serve the roles of currents.

Recall the Hodge-⋆ operator which sends m-forms to (d − m) forms ⋆ : Ψm
r,α → Ψd−m

r,α . The
invariant probability measure µ gives a canonical choice of the Lebesgue volume element on
the Rd-leaves of Ω, and thus there is a canonical volume element dt = ⋆1. With this choice,
the Hodge-⋆ operator gives a canonical bijection between functions and tangential d-forms: for
h ∈ Sr

α, ⋆h = h(⋆1) = h dt ∈ Ψd
r,α.

Proposition 4.1. Br′,α′
m ⊂ Br,α

m if r′ ≥ r and α′ ≤ α, and the inclusion is compact if r′ > r and
α > α′ + Λ > Λ > 0.

The inclusions follow from the definitions of the norms so what is left to prove is the compact-
ness of the inclusion. The following compactness criterion [FGL19, §2.2] will be used: Let B ⊂ C
be two Banach spaces and assume that for any ε > 0 there exist finitely many continuous linear
forms L1, . . . , Lm on B such that for any x ∈ B

∥x∥C ≤ ε∥x∥B +
∑
i≤m

|Li(x)|.

Then the inclusion of B in C is compact.
17



In order to apply the criterion, several estimates will need to be obtained. For an m-form
φ : Ω → ∧mT ∗Rd and k ∈ N0, set ν̂k,x := νk,x(C

⊥
k (x)), recall (11)

(29) Πkφ(x) := ν̂−1k,x

∫
C⊥

k (x)

φdνk,x, and ∆k := φ− Πkφ,

both of which are m-forms. Recall that Πkφ is transversally locally constant. That is, Πkφ(z)
depends only on the first k coordinates zi of z.

Lemma 4.1. For r ∈ N0, let φ : Ω → ∧mT ∗Rd with ∥φ∥⊥α+r,m ≤ 1. If α > Λ + α′ > 0, then for
any ε > 0 there exists a k > 0 such that

∥∆kφ∥⊥α′+r,m <
ε

2
and ∥Πkφ∥⊥α+r,m ≤ 4λΛ

0Cµ

(
8Cµ

ε

) Λ
r+α−Λ−α′

.

Proof. Using Lemma 2.1,

∥∆kφ(x)∥ ≤ ν̂−1k,x

∫
C⊥

k (x)

∥φ(x)− φ(z)∥ dνk,x(z) ≤ Cφλ
−k(α+r)
0

and so ∥∆kφ∥C0 ≤ 2Cφλ
−(α+r)k
0 .

Now ∥∆kφ∥⊥α′,m will be bound. If a, b ∈ C⊥ℓ (x) with ℓ ≥ k then C⊥k (a) = C⊥k (b) and so

∥∆kφ(a)−∆kφ(b)∥ = ν̂−1k,a ∥φ(a)− φ(b)∥

≤ Cµλ
kλ
−ℓ(α+r)
0 = Cµλ

kΛ−ℓ(α+r)
0 .

If ℓ < k and a, b ∈ C⊥ℓ (x):

∥∆kφ(a)−∆k(b)∥ ≤ ν̂−1k,a

∫
C⊥

k (a)

∥φ(a)− φ(z)∥ dνk,a(z) + ν̂−1k,b

∫
C⊥

k (b)

∥φ(b)− φ(z)∥ dνk,b(z)

≤ 2Cφλ
−k(r+α)
0 .

Thus if a, b ∈ C⊥ℓ (x)

(30) ∥∆kφ(a)−∆k(b)∥
λ
−(α′+r)ℓ
0

≤

{
Cµλ

(α′+r)ℓ
0 λ

(kΛ−ℓ(α+r))
0 ≤ Cµλ

−k(α−Λ−α′)
0 if ℓ ≥ k,

2Cµλ
(α′+r)ℓ
0 λ

−(α+r)k
0 ≤ 2Cµλ

−k(α−Λ−α′)
0 if ℓ < k.

Putting everything together:

∥∆kφ∥⊥α′+r,m = ∥∆kφ∥C0 + |∆kφ|⊥α′,m ≤ 2Cµλ
(Λ−α)k
0 + 2Cµλ

(Λ+α′−α)k
0

≤ 4Cµλ
−(α−Λ−α′)k
0 .

Thus if

(31) k =


log
(

8Cµ

ε

)
(α− Λ− α′) log λ0


then ∥∆kφ∥⊥α′+r,m ≤ ε/2, which proves the first estimate.

To obtain the second estimate, first note that for a, b ∈ C⊥ℓ (x), ∥Πkφ(a) − Πkφ(b)∥ = 0 if
ℓ ≥ k and if ℓ < k:

∥Πkφ(a)− Πkφ(b)∥ ≤ ∥φ(a)− φ(b)∥+ ∥∆kφ(a)−∆kφ(b)∥ ≤ λ
−ℓ(r+α)
0 + 2Cµλ

(Λ−α−r)k
0 ,
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where the first estimate follows from the fact that ∥φ∥⊥r+α,m ≤ 1 and the second from the estimate
leading to (30). Thus

|Πkφ|⊥α+r,m ≤ 1 + 2Cµλ
k(α+r)
0 λ

(Λ−α−r)k
0 = 1 + 2Cµλ

Λk
0

and so it follows that
(32) ∥Πkφ∥⊥α+r,m = ∥Πkφ∥C0 + |Πkφ|⊥α+r,m ≤ ∥φ∥C0 + 1 + 2Cµλ

Λk
0 ≤ 2 + 2Cµλ

Λk
0 ≤ 4Cµλ

Λk
0 .

Using in (32) the choice for k in (31), the second estimate follows. □

Proof of Proposition 4.1. To apply the compactness criterion, let ε > 0. Since H⊥α+r,m is compactly
embedded in H⊥α′+r,m let {φj}j≤Kε ⊂ H⊥α+r,m be a finite family of forms such that for any φ ∈

H⊥α+r,m with ∥φj∥⊥α+r,m ≤ 4λΛ
0Cµ

(
8Cµ

ε

) Λ
r+α−Λ−α′

there is a φj∗ in the family such that ∥φ −
φj∗∥⊥α′+r,m ≤ ε/2. Define the finite family of linear forms Lj,i : Br′,α′

m → R by

Lj,i(η) =

∫
Ω

⟨φj, ∂
iη⟩ dµ,

where i is a multiindex of length at most r′ and j ≤ Kε.
Forφwith ∥φ∥⊥α+r,m ≤ 1, let k ∈ N be the one given by Lemma 4.1, so that ∥∆kφ∥⊥α′+r,m ≤ ε/2.

Let j∗ ≤ Kε be such that ∥Πkφ− φj∗∥⊥α′+r,m ≤ ε/2. Thus for η ∈ Br′,α′
m and a multiindex i with

|i| = r it follows that∣∣∣∣∫
Ω

⟨φ, ∂iη⟩ dµ
∣∣∣∣ ≤ ∣∣∣∣∫

Ω

⟨∆kφ, ∂
iη⟩ dµ

∣∣∣∣+ ∣∣∣∣∫
Ω

⟨Πkφ− φj∗ , ∂
iη⟩ dµ

∣∣∣∣+ ∣∣∣∣∫
Ω

⟨φj∗ , ∂
iη⟩ dµ

∣∣∣∣
and so it follows that

|||η|||r,α ≤ ε

2
|||η|||r′,α′ +

ε

2
|||η|||r′,α′ + |Lj∗,i(η)|

and so compactness follows from the criterion. □

It will be useful below to have a version of cohomology with coefficients in the anisotropic
spaces Br,α

∗ . To that end, let H∗Br,α(Ω) be the cohomology of tangentially smooth forms with Br,α
0

coefficients.

Proposition 4.2. Let r ∈ N and α > 1. Then H∗Br,α(Ω)
∼= H∗r,α(Ω) ∼= Ȟ(Ω;R).

Proof. Let η ∈ Br,α
m be a closed m-form. It will be shown that there is a form η′ ∈ Ψm

r,α such that
η − η′ = dω.

Let {ηk} ⊂ Ψm
r,α be a sequence of closed forms such that ηk → η in Br,α

m . As in the proof of
Proposition 3.2, for each k there is a η′k ∈ π∗βm

Cr(Γ) such that ηk − η′k = dωk. Thus∫
Ω

⟨φ, η − ηk⟩ dµ =

∫
Ω

⟨φ, η − η′k − dωk⟩ dµ → 0

for any φ ∈ H⊥α (Ω). Thus [η − η′k] = [η] − [η′k] → 0. But η′k ∈ π∗βm
Cr for all k, and so

[η′k] ∈ π∗βm
Ȟm(Γ;R) ⊂ Ȟm(Ω;R) for all k, meaning that [η] defines a class in Ȟm(Ω;R). □

Proposition 2.1 and the definition of the spaces Br,α
m implies the following.

Lemma 4.2. The differential operator d onm forms is a bounded operator from Br,α
m to Br−1,α+1

m+1 .
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4.2. The transfer operator. Define the transfer operator to be
Lf := f ◦ Φ−1

where f is an m-form and note that for any y ∈ C⊥0 (x):
∥Φ∗f(x)− Φ∗f(y)∥ ≤ |f |⊥α,md(Φ(x),Φ(y))α ≤ |f |⊥α,mλ−α0 d(x, y)α

and so
(33) |Φ∗f |⊥α,m ≤ λ−α0 |f |⊥α,m.
The following estimates, similar to those of Lemma 4.1, will be needed in the proof for the Lasota-
Yorke inequalities below.

Lemma 4.3. If ∥φ∥⊥β,m ≤ 1 then for α > β:

∥(∆kφ) ◦ Φn∥⊥β,m ≤ 2Cµ

(
λ−βk0 + λΛk−βn

0

)
and

∥Πkφ ◦ Φn∥⊥α,m ≤ 1 + 3Cµλ
(α−β)k−nα
0 .

(34)

Proof. The estimate for ∥∆kφ∥⊥β,m follows essentially from the computations up to and including
(30), and combined with (33) the estimate for ∥(∆kφ) ◦ Φn∥⊥β,m follows. Now, if a, b ∈ C⊥ℓ (x) and
ℓ ≥ k, then ∥Πkφ(a)− Πkφ(b)∥ = 0. If ℓ < k:

∥Πkφ(a)− Πkφ(b)∥ ≤ ∥φ(a)− φ(b)∥+ ∥∆kφ(a)−∆kφ(b)∥ ≤ λ−ℓβ0 + 2Cµλ
−βk
0 ,

where the last term is obtained in the same way as the estimates leading to (30), and so |Πkφ|⊥α,m ≤
3Cµλ

(α−β)k
0 , which combined with (33) proves the estimate for ∥Πkφ ◦ Φn∥⊥α,m. □

Proposition 4.3 (Lasota-Yorke inequalities). For each r, n ∈ N, α, α′ with α > α′ > 0, ν ∈
(λ−r0 , 1) and m ∈ {0, . . . , d}, there are D,E > 0 such that

|||Lη|||r,α,m ≤ |||η|||r,α,m and |||Lnη|||r+1,α′,m ≤ Dνn|||η|||r+1,α′,m + E|||η|||r,α,m.

Proof. First observe that

(35)
∫
Ω

⟨φ, ∂i1 · · · ∂ipLη⟩ dµ =

p∏
j=1

λ−1ij

∫
Ω

⟨φ ◦ Φ, ∂i1 · · · ∂ipη⟩ dµ.

This combined with (33) yields the first inequality. To address the second, first note that

|||Lnη|||r+1,α′,m = sup
i1,...,ir+1

sup
φ∈B⊥

1,m(α′+r+1)

∣∣∣∣∫
Ω

⟨φ, ∂iLnη⟩ dµ
∣∣∣∣+ |||Lnη|||r,α′,m,

and so (35) implies that

(36) |||Lnη|||r+1,α′,m ≤ λ
−(r+1)n
0 |||η|||r+1,α′,m + |||Lnη|||r,α′,m.

Now, if ∥φ∥⊥α′+p,m ≤ 1 and |i| = p ≤ r, again by (35):∣∣∣∣∫
Ω

⟨φ, ∂iLnη⟩ dµ
∣∣∣∣ ≤ λ−np0

∣∣∣∣∫
Ω

⟨φ ◦ Φn, ∂iη⟩ dµ
∣∣∣∣

≤ λ−pn0

(∣∣∣∣∫
Ω

⟨∆kφ ◦ Φn, ∂iη⟩ dµ
∣∣∣∣+ ∣∣∣∣∫

Ω

⟨Πkφ ◦ Φn, ∂iη⟩ dµ
∣∣∣∣)
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and so using Lemma 4.3,

|||Lnη|||r,α′,m ≤ 4Cµλ
−rn
0

(
λ
−(α′+r)k
0 + λ

Λk−(α′+r)n
0

)
|||η|||r,α′,m

+ 4Cµλ
−rn
0

(
1 + 2Cµλ

(α−α′)k−n(α+r)
0

)
|||η|||r,α,m.

Combining these estimates with (36):

|||Lnη|||r+1,α′,m ≤ 4Cµλ
−rn
0

(
λ0 + λ

−(α′+r)k
0 + λ

Λk−(α′+r)n
0

)
|||η|||r+1,α′,m

+ 4Cµλ
−rn
0

(
1 + 2Cµλ

(α−α′)k−n(α+r)
0

)
|||η|||r,α,m

from which the result follows. □

4.3. The spectrum of L. Propositions 4.1 and 4.3, combined with Hennion’s theorem [DKL21,
Theorem B.14], yields the following.

Corollary 4.1. For α > Λ and r ∈ N, the spectrum of L : Br,α
m → Br,α

m is contained in the closed
unit ball in C and the essential spectrum is contained in the closed ball of radius λ−r0 in C.

The following Proposition is a consequence of a theorem of Baladi-Tsuji and shows that to a
certain extent the spectrum is independent of Banach spaces used.

Proposition 4.4. The discrete spectrum is independent of the Banach space Br,α
0 : for α > Λ and

r′ > r > 0, then the discrete part of the spectrum of L of norm greater than λ−r0 coincides for L|Br,α0

and L|Br′,α0
. In addition, the corresponding generalized eigenspaces are contained in Br,α

0 ∩ Br′,α
0 .

Proof. The results will follow from [BT08, Lemma A.1] as long as the inclusion Sr′
α ⊂ Sr

α is shown
to be dense with respect to |||·|||r,α,m.

Let f =
∑

k≥0 f
(k) ∈ Sr

α, where f (k) = π∗kgk for some gk ∈ Cr(Γk). Since smooth functions
are dense in Cr(Γk), for every n ∈ N and k ∈ N0 pick a gnk ∈ Cr′(Γk) such that ∥gk−gnk∥Cr(Γk) ≤
λ
−(n+αk)
0 . Let fn :=

∑
k≥0 π

∗
kg

n
k . It now needs to be shown that fn → f in Br,α

0 .
If φ ∈ L1 and ∥φ∥∞ ≤ 1,∣∣∣∣∫

Ω

φ∂i(f − fn) dµ

∣∣∣∣ ≤∑
k≥0

∥∥∂i(π∗k(gk − gnk ))
∥∥
∞ ≤

∑
k≥0

λ−ik0

∥∥π∗k∂i(gk − g′k)
∥∥
∞

≤ λ−n0

∑
k≥0

λ−ik0 λ−αk0 ,
(37)

and thus |||f − fn|||r,α,0 → 0 and the statement follows from [BT08, Lemma A.1]. □

Denote by Σ+
m the spectrum of Φ∗ : Ȟm(Ω;R) → Ȟm(Ω;R) consisting of expanding eigenval-

ues, Σ−m the spectrum of Φ−1∗ : Ȟm(Ω;R) → Ȟm(Ω;R) consisting of contracting eigenvalues,
and set

σr,α,m := spec(L|Br,αm
) ∩ {z ∈ C : |z| > λ−r0 }

to be the discrete spectrum of L on Br,α
m , assuming r ∈ N and α > Λ by Corollary 4.1. Note that

the map x 7→ x−1 gives a bijection between Σ+
m and Σ−m.

Lemma 4.4. For α > Λ, r ∈ N and σr,α,m as above:
(i) 1 ∈ σr,α,0. It is the unique eigenvalue of modulus 1 and it has multiplicity one.
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(ii) ν ∈ σr,α,0 if and only if λ−1ν ∈ σr,α,d.
(iii) For r ∈ N and α > Λ + 1, Σ−d \ σr+1,α−1,d−1 ⊂ σr,α,d.
(iv) Σ−d \ {λ−1} ⊂ σr,α,d−1.
(v) σr,α,m ⊂ (σr+1,α−1,m−1 ∪ Σ−m ∪ σr−1,α+1,m+1).

Proof. The map Φ is topologically mixing [AP98, Proposition 3.1]. Property (i) follows from a
standard argument depending on this mixing hypothesis; see [Bal18, §7.1.1]. The second item
follows from the duality between 0 and d forms given by the Hodge-⋆ operator.

For (iii), it needs to be shown that if ν ∈ Σ−d and ν ̸∈ σr+1,α−1,d−1 then for any r ∈ N, r > Λ
there exists a η ∈ Ψd

r,α such that (L−ν · Id)kη = 0 for some k ≥ 0. Now, if ν ∈ Σ−d \σr+1,α−1,d−1
then by Theorem 3.1 there exists η ∈ Ψd

r,α such that (L−ν · Id)k[η] = 0 for all k large enough and
so there is a ωη ∈ Ψd−1

r+1,α−1 such that (L − ν · Id)kη = dωη. If θ = (L − ν · Id)−kωη ∈ Ψd−1
r+1,α−1,

then η′ = η − dθ satisfies (L − ν · Id)kη′ = 0.
For (iv), note that the smallest element (in norm) of Σ−d is λ−1. Suppose that for some ν ∈ Σ−d

with λ−1 < ν, ν ̸∈ σr,α,d−1. Then by (ii), ν ∈ σr−1,α+1,d, which by (i) means that λν ∈ σr−1,α+1,0.
But |λν| > 1, contradicting that the spectral radius is 1. So ν ∈ σr,α,d−1.

Item (v) is due to Daniele Galli, but the proof is included here for completeness. Let ν ∈ σr,α,m.
Then there exists a η ∈ Ψm

r,α and J such that (L− ν)Jη = 0. If η is not closed, then (L− ν)Jdη =

d(L − ν)Jη = 0, meaning that ν ∈ σr−1,α+1,m+1. Now suppose that η is closed and not exact.
Then (L− ν)Jη = 0 implies that ν ∈ Σ−m. Now suppose that η = dθ ̸= 0 for some θ ∈ Ψm−1

r+1,α−1.
Then (L − ν)Jη = (L − ν)Jdθ = d(L − ν)Jθ = 0, that is, either ν ∈ σr+1,α−1,m−1 or (L − ν)Jθ
is closed. Suppose (L − ν)Jθ is closed, set ω := (L − ν)Jθ ∈ Ψm−1

r+1,α−1. If (L − ν)J is invertible
on closed forms, then θ = (L − ν)−Jω is closed, and dθ = η = 0, which is a contradiction. So
(L − ν)J is not invertible on closed forms, meaning that ν ∈ σr+1,α−1,m−1. □

Let σ− be the eigenvalues associated to generalized eigenvectors of Φ−1∗ : E++ → E++. Note
that when d = 1 this implies that Σ−1 = σ−. The following proposition gives Theorem 1.2.
Proposition 4.5. For r ∈ N and α > Λ:

(i) if d = 1, then the set of eigenvalues for L acting on Br,α
0 contains σ− \ {λ−1}. In addition,

if ν is an eigenvalue in Br,α
0 and k < α − Λ, then λ−1ν is an eigenvalue in Br+k,α−k

0 . It
follows that if F :=

⋂
α>0,r>0

Sr
α, then the Ruelle spectrum for functions in F contains the set

of numbers of the form λ−kν with ν ∈ σ− \ {λ−1} and k ∈ N.
(ii) If d = 2, then the set of eigenvalues for L acting on Br,α

0 contains σ− \ {λ−1}. If S∞α :=⋂
r>0

Sr
α, then the Ruelle spectrum for functions in S∞α contains the set σ− \ {λ−1} .

Proof. Both of these are consequences of Lemma 4.4. For d = 1, that Σ−1 \ {λ−1} follows directly
from part (iii) of Lemma 4.4. Now suppose that ν ∈ σr,α,0 for some |ν| < 1. Then by (i), λ−1ν ∈
σr,α,1. So (L − λ−1ν)J1η = 0 for some η ∈ Br,α

1 . Since λ−1|ν| < λ−1, η has to be exact as Σ−1
is bounded from below by λ−1. So η = dθ1 (where θ1 ∈ Br+1,α−1

0 is uniquely defined up to a
close 0-form, that is, a constant) and (L − λ−1ν)J1η = (L − λ−1ν)J1dθ1 = d(L − λ−1ν)J1θ1 =
0. Thus either (L − λ−1ν)J1θ1 is closed or (L − λ−1ν)J1θ1 = 0. If (L − λ−1ν)J1θ1 is closed,
then it is constant, and denote by c1 := (L − λ−1ν)J1θ1. Letting θ′1 = θ1 − c1, it follows that
(L − λ−1ν)J1θ′1 = 0 and thus it follows that λ−1ν ∈ σr+1,α−1,0. So we’re back where we started
and the same argument gives that λ−2ν ∈ σr+2,α−2,0 and so on.
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If d = 2, by parts (ii), (iv) and (v) of Lemma 4.4 it follows that
Σ−2 \ {λ−1} ⊂ σr,α,1 ⊂

(
σr+1,α−1,0 ∪ Σ−1 ∪ λ−1 · σr−1,α+1,0

)
.

Let ν ∈ σ− \ {λ−1} ⊂ Σ−2 \ {λ−1}. First, ν ̸∈ Σ−1 , since by definition ν contracts faster than the
smallest contracting eigenvalue in Σ−1 . Now, λ|ν| > 1, so by (ii) ν ̸∈ σr−1,α+1,2 = λ−1σr−1,α+1,0.
So it follows that ν ∈ σr−1,α+1,0. □

5. Applications to primitive substitution subshifts

Let A be a finite set (the alphabet) and A∗ be the set of finite words on A. Let ϱ : A → A∗ be
a primitive substitution rule. This means there is an N such that for any a, b ∈ A the symbol a
appears in ϱN(b). Without loss of generality (i.e. by passing to a power) we will assume that there
is a symbol a ∈ A such that ϱ(a) begins with a. Let ā = limN→∞ ϱN(a) ∈ AN be a fixed point
of the substitution and define Xϱ to be the orbit closure of ā under the shift map σ : AN → AN.
The system σ : Xϱ → Xϱ is a minimal subshift.

Define the metric on Xϱ as

(38) d(b̄, c̄) = λ−k(b̄,c̄),

for b̄, c̄ ∈ Xϱ, where k(b̄, c̄) ∈ N is the smallest index i so that ci ̸= bi, and λ > 0 is the Perron-
Frobenius eigenvalue of the substitution matrix for ϱ.

There is an associated solenoid to ϱ constructed as follows. Let r : Xϱ → R+ be the function
defined as r(l̄) = vl1 , where v ∈ R|A| is a positive Perron-Frobenius eigenvector for the substitu-
tion matrix, and let Ωϱ be the suspension of Xϱ with roof function r. Then there exists a compact
1-dimensional CW complex Γ and an cellular affine (outside the zero-cells of Γ) map γ : Γ → Γ
such that

Ωϱ
∼= lim
←

(Γ, γ) .

This is the Anderson-Putnam construction [AP98] and the CW complex Γ is refered to as the AP-
complex. Denote Γk = πk(Ωϱ) the “kth” AP complex. The identification above is not only through
a homeomorphism, but in fact an isometry. That is, there is a natural inclusion i : Xϱ → Ωϱ which,
under the identification above, can be identified with C⊥0 (ā). This inclusion is an isometry with
respect to the metrics (3) and (38). Denote by Hα(Xϱ) the space of α-Hölder functions on Xϱ

with respect to this metric.
Let 0 < ε < minl∈A |vl|/4. With this choice of ε, the ε-neighborhood of i(Xϱ) = C⊥0 (ā) has

the local coordinates (t, c) ∈ (−ε, ε)×Xϱ. If uε : (−ε, ε) → R is a smooth even bump function
with compact support and of integral 1, then for any function h : Xϱ → R let hε : Ωϱ → R be
defined as hε(t, c) = uε(t)h(c) for (t, c) ∈ (−ε, ε)×Xϱ and zero otherwise.

5.1. The cohomological equation for primitive substitution subshifts. This section is ded-
icated to the proof of Theorem 1.3 on the solutions of the cohomological equation for primitive
substitution subshifts σ : Xϱ → Xϱ. That is, the goal here is to find a solution u to the equation
f = u ◦ σ − u for a given f .
Lemma 5.1. If h : Xϱ → R is α-Hölder, then hε ∈ S1

α−1 for α > 1. If r ∈ N and α > 2, then the
cohomology class [hε dt] ∈ H1

r,α(Ωϱ) is independent of uε.

Proof. The goal is to write
hε =

∑
k≥0

π∗kgk
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with the appropriate bounds on ∥gk∥C1(Γk). Using the notation of (29), define hk
ε := Πkhε which,

in the natural coordinates of the ε-neighborhood of C⊥0 (ā), is defined as

hk
ε(t, c) = ν̂−1k,(t,c)

∫
C⊥

k (t,c)

hε(t, w) dνk,(t,c) = uε(t)ν̂
−1
k,(t,c)

∫
C⊥

k (c)

h(w) dνk,c.

By the same calculation as in §4.1, ∥hk
ε −hε∥C0 ≤ Cµ∥u∥∞λ−αk. Now, letting h−1ε = 0, for any

k ≥ 0 define δkhε = hk
ε − hk−1

ε . As such,
k∑

j=0

δjhε = hk
ε

and, since δkhε only depends on at most the first k coordinates, δkhε = π∗kgk for some gk : Γk →
R. If α > 1, then

∑k
j=0 π

∗
kgk → hε pointwise. It remains to prove the C1 bounds for gk.

Let Pk = γ−k(π0(ā)) ⊂ Γk be the preimages of π0(ā) under γk. These points can be of one
of two types: flat points or branch points. Flat points have a Euclidean neighborhood whereas
branch points do not.

Since hk
ε is transversally locally constant, hk

ε = π∗kHk, for some Hk : Γk → R. Note that the
task is to obtain C1 bounds for gk = Hk − γ∗Hk−1.

The function Hk is supported in the λ−kε-neighborhood of Pk as follows. If z ∈ Pk is a flat
point, then in the λ−kε-neighborhood of z ∈ Pk, after identifying z with 0 in these coordinates,
Hk(t) = uε(λ

kt)hk
ε(cz), where cz ∈ C⊥0 (ā) is a point in the clopen subset of Xϱ corresponding to

z. From this it follows that in these local coordinates
gk(t) = uε(λ

kt)(hk
ε(cz)− hk−1

ε (cz))

= uε(λ
kt)

[
ν̂−1k,cz

∫
C⊥

k (cz)

h(w)− h(cz) dνk,cz − ν̂−1k−1,cz

∫
C⊥

k−1(cz)

h(w)− h(cz) dνk,cz

]
(39)

in a λ−kε-neighborhood of z ∈ Pk. Note that since h is α-Hölder, by rewriting it as in (39),∣∣hk
ε(cz)− hk−1

ε (cz)
∣∣ ≤ 2Chλ

−α(k−1)

and so ∥gk∥C0 ≤ 2λCh∥uε∥∞λ−kα. Moreover, in the nieghborhood of z ∈ Pk,

g′k = λku′ε(λ
kt)(hk

ε(cz)− hk−1
ε (cz))

and so
∥g′k∥∞ = λk∥u′ε∥∞

∣∣hk
ε(cz)− hk−1

ε (cz)
∣∣ ≤ Chλ

k∥u′ε∥∞λ−α(k−1)

and so it follows that ∥gk∥C1 ≤ Cλ−k(α−1) for all k, and thus hε ∈ S1
α−1. The case of z ∈ Pk

being a branched point is essentially treated in the same way: (39) needs to be written carefully
to take into consideration the different branches coming out of z. Indeed (39) treats two branches
coming out of z in the flat case, and so (39) can be used to treat the branched case with minor
modifications. The details are left to the reader.

That the cohomology class is independent of uε follows from the fact that the compactly sup-
ported de Rham cohomology of the line is one-dimensional in top degree. □

Remark 5.1. Note that the same proof can be modified to show that hε ∈ Sr
α−r for any r <

α. However, the focus is on r = 1 since the transverse Hölder regularity is what needs to be
optimized.
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Definition 5.1. f : Xϱ → R is a coboundary if there exists a f : Xϱ → R such that f =
g ◦σ−g. For α > 0 it is a α-coboundary if f is α-Hölder and g is (α−2)-Hölder. The α-Hölder
cohomologyH0

α(Xϱ) of Xϱ is the quotient of Hα(Xϱ) by the equivalence relation f1 ∼ f2 is and
only if f1 − f2 is a α-coboundary.

In what follows, X is the differential operator in the leaf direction.

Lemma 5.2. For α > 2 and an α-Hölder function h on Xϱ, h = g ◦ σ − g for some g ∈ Hα−2(Xϱ)
if and only if hε = XΘ for some Θ ∈ S2

α−2.

Proof. Suppose hε = XΘ. By Lemma 5.1, hε ∈ S1
α−1, and so Θ ∈ S2

α−2 by Proposition 2.1. Since
uε has integral one,

h(c) =

∫ ε

−ε
hε(t, c) dt =

∫ ε

−ε
XΘ(t, c) dt = Θ(ε, c)−Θ(−ε, c).

Now, since hε is compactly supported in the ε-neighborhood of i(Xϱ) and 0 = hε(±ε, c) =
XΘ(±ε, c), Θ is leafwise constant on the complement of the ε-neighborhood of i(Xϱ), which
implies that Θ(ε, c) = Θ(−ε, σ(c)). Defining g(c) = Θ(−ε, c), it follows that h = g ◦ σ − g.

Now suppose h = g ◦ σ − g and consider hε as constructed above. In the ε-neighborhood of
i(Xϱ), define Θ(t, c) = g(c) +

∫ t

−ε uε(s)h(c) ds and so close to i(Xϱ) it holds that XΘ = hε. By
construction, and by the fact that h = g ◦ σ − g, this function satisfies hε = XΘ globally. The
details are left to the reader. □

Lemmas 5.1 and 5.2 imply that the induced map j : H0
α(Xϱ) → H1

1,α−1(Ωϱ) ∼= Ȟ1(Ωϱ;R) de-
fined by j([f ]) = [fε] is injective whenever α > 2. This implies that H0

α(Xϱ) is finite dimensional
and concludes the proof of Theorem 1.3.
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